Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (10): 196-199    DOI: 10.16606/j.cnki.issn0253-4320.2021.10.040
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
正极材料的优化及其改善锂硫电池充放电性能的研究
刘秀兰1, 扈晨2, 冯义1, 蔡宏伟1, 张玉佳1
1. 国网北京电力科学研究院, 北京 100075;
2. 国网北京市电力公司, 北京 100083
Optimization of cathode material and its effect on improvement of charge/discharge performance of lithium-sulfur batteries
LIU Xiu-lan1, HU Chen2, FENG Yi1, CAI Hong-wei1, ZHANG Yu-jia1
1. State Grid Beijing Electric Power Research Institute, Beijing 100075, China;
2. Beijing Electric Power Company, State Grid Corporation of China, Beijing 100083, China
下载:  PDF (2534KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 穿梭效应导致锂硫电池(LSBs)充放电性能衰减、寿命短,阻碍其成功进入商业化。穿梭效应的抑制策略可阻止聚硫负离子移动和减少可溶性Li2Sx浓度。前者对穿梭效应的抑制存在饱和现象,因此在优化锂硫电池正极材料中,引入过渡金属催化剂加速聚硫化锂的转化是进一步抑制穿梭效应、提高电池寿命的可行方案。通过优化碳复合材料设计制备了氧化亚锰(MnO)@空心碳球复合材料,两面三点(物理:多孔笼状结构的阻碍;化学:极性材料共价吸附和催化剂加速多硫化锂转化)协同抑制穿梭效应。结果表明,该优化材料能有效提升锂硫电池充放电性能、改善循环寿命,且倍率性能良好。在0.5 C倍率下,其初始放电比容量达到1009 mA·h/g,经过200次循环之后,其比容量为853 mA·h/g,容量保持率达到84.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘秀兰
扈晨
冯义
蔡宏伟
张玉佳
关键词:  氧化亚锰  空心碳球  穿梭效应  锂硫电池    
Abstract: The shuttle effect of polysulfides cause lithium-sulfur batteries (LSBs) to have a degraded charge and discharge performance, a short service life and a poor cyclic stability, hindering LSBs to be commercialization.To suppress the shuttle effect, two strategies have been developed, including restraining the movement of Sx2- and reducing the concentration of Li2Sx.However, there exists saturation phenomenon in the suppression of shuttle effect by using the former strategy.Therefore, it is favorable for further suppressing the shuttle effect by adding transition metal catalysts for accelerating the conversion of polysulfides.MnO@hollow carbon sphere (MnO@C), an improved composite for suppressing the shuttle effect, is designed and prepared through optimizing carbon composites.It can suppress the shuttle effect through the synergy between physical and chemical effects.It is proved by the results that the optimized composite can effectively help LSBs to improve the charge/discharge performance, the cycle property and the rate capability.The initial discharge specific capacity of the LSBs reaches 1, 009 mAh·g-1 at 0.5 C.After 200 cycles, the specific capacity of the LSBs is 853 mAh·g-1, indicating that the capacity retention ratio achieves 84.5%.
Key words:  manganous oxide    hollow carbon spheres    shuttle effect    lithium-sulfur battery
收稿日期:  2020-10-31      修回日期:  2021-08-16           出版日期:  2021-10-20
ZTFLH:  TM911  
通讯作者:  刘秀兰(1983-),女,硕士,高工,主要从事电动汽车充电技术研究,通讯联系人,763668662@qq.com。    E-mail:  763668662@qq.com
引用本文:    
刘秀兰, 扈晨, 冯义, 蔡宏伟, 张玉佳. 正极材料的优化及其改善锂硫电池充放电性能的研究[J]. 现代化工, 2021, 41(10): 196-199.
LIU Xiu-lan, HU Chen, FENG Yi, CAI Hong-wei, ZHANG Yu-jia. Optimization of cathode material and its effect on improvement of charge/discharge performance of lithium-sulfur batteries. Modern Chemical Industry, 2021, 41(10): 196-199.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.10.040  或          https://www.xdhg.com.cn/CN/Y2021/V41/I10/196
[1] Manthiram A,Fu Y,Chung S H,et al.Rechargeable lithium-sulfur batteries[J].Chem Rev,2014,114(23):11751-11787.
[2] Zhang L,Chen X,Wan F,et al.Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries[J].ACS Nano,2018,12(9):9578-9586.
[3] Manthiram A,Fu Y,Su Y.Challenges and prospects of lithium-sulfur batteries[J].Acc Chem Res,2013,46(5):1125-1134.
[4] Li H,Tao Y,Zhang C,et al.Dense grapheme monolith for high volumetric energy density Li-s batteries[J].Adv Energy Mater,2018,8(18):1703438.
[5] Zhu Y,Wang S,Miao Z C,et al.Novel non-carbon sulfur hosts based on strong chemisorption for lithium-Sulfur batteries[J].Small,2018,14(40):1801987.
[6] Fang R,Chen K,Yin L,et al.The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries[J].Adv Mater,2019,31(9):1800863.
[7] Yang Y,Liu X,Zhu Z,et al.The role of geometric sites in 2D materials for energy storage[J].Joule,2018,2(6):1075-1094.
[8] Ye C,Jiao Y,Jin H,et al.2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries[J].Angew Chem Int Ed,2018,57(51):16703-16707.
[9] Zuo Y,Zhao M,Ren P,et al.An efficient polysulfide trapper of an nitrogen and nickel-decorating amylum scaffold-coated separator for ultrahigh performance in lithium-sulfur batteries[J].J Mater Chem A,2020,8(3):1238-1246.
[10] He Y,Qiao Y,Chang Z,et al.Developing a "polysulfide-phobic" strategy to restrain shuttle effect in lithium-sulfur batteries[J].Angew Chem Int Ed,2019,58(34):11901-11904.
[11] Srinivasulu R B R,Mookala P,Yeon Ju L,et al.Synthesis and electrochemical properties of MoS2/rGO/S composite as a cathode material for lithium-sulfur batteries[J].J Nanosci Nanotechnol,2020,20(11):7087-7091.
[12] Yinglin Y,Jiaming L,Sshiyu C,et al.Investigation on the electrochemical properties of antimony tin oxide nanoparticle-modified graphene aerogel as cathode matrix in lithium-sulfur battery[J].J Nanosci Nanotechnol,2020,20(11):7027-7033.
[13] Hou J,Tu X,Wu X,et al.Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host[J].Chem Eng J,2020,401:126141.
[14] Balach J,Jaumann T,Muehlenhofe S,et al.Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries[J].Chem Commun,2016,52(52):8134-8137.
[15] Liao Y,Xiang J,Yuan L,et al.Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries[J].ACS Appl Mater Inter,2018,10(44):37955-37962.
[16] Wang J,Jia L,Zhong J,et al.Single-atom catalyst boosts electrochemical conversion reactions in batteries[J].Energy Storage Mater,2019,18:246-252.
[17] Du L,Wu Q,Yang L,et al.Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries[J].Nano Energy,2019,57:34-40.
[18] Li Q,Ma Z,Li J,et al.A Core-Shell structured sulfur cathode:Ultrathin delta-MnO2 nanosheets as catalytic conversion shell for lithium polysulfides in high-sulfur content lithium-sulfur batteries[J].ACS Appl Mater Inter,2020,12(31):35049-35057.
[19] Liang X,Hart C,Pang Q,et al.A highly efficient polysulfide mediator for lithium-sulfur batteries[J].Nat Commun,2015,6(1):9994-10024.
[20] Lin C,Qu L,Li J,et al.Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries[J].Nano Res,2019,12(1):205-210.
[1] 杨玉艳, 周丽丽, 陈兴华, 苏芸, 王亚清, 王斌. 锂硫电池正极用氮掺杂的多孔碳纤维载体材料的研究[J]. 现代化工, 2021, 41(6): 167-171.
[2] 张康明, 戴丽琴, 谢莉婧, 苏方远, 刘卓, 陈志文, 陈成猛. 高还原氧化石墨烯隔膜应用于锂硫电池的研究[J]. 现代化工, 2020, 40(1): 150-154,160.
[3] 洪晓东, 李顺利, 刘雨琳. 改性隔膜/隔层在锂硫电池中的应用进展[J]. 现代化工, 2018, 38(2): 30-33,35.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn