Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (10): 186-190,195    DOI: 10.16606/j.cnki.issn0253-4320.2021.10.038
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
聚吡咯基改性碳刷电极在微生物燃料电池中的应用研究
赵婷, 邱峥辉, 郑纪勇, 蔺存国
中国船舶重工集团公司第七二五研究所, 海洋腐蚀与防护重点实验室, 山东 青岛 266237
Application of polypyrrole modified carbon brush electrode in microbial fuel cells
ZHAO Ting, QIU Zheng-hui, ZHENG Ji-yong, LIN Cun-guo
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
下载:  PDF (4643KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对微生物燃料电池输出功率低的问题,以碳纤维刷为改性对象,采用原位化学聚合的方法在碳纤维表面生长聚吡咯薄膜,增强电极的生物相容性,有利于产电微生物在电极表面的附着和繁殖;进一步在碳纤维表面引入石墨烯,可提高电极的比表面积和导电性能。结果表明,在聚吡咯和石墨烯的协同作用下,微生物燃料电池的产电性能得到极大提升,最大输出电压和最大输出功率密度分别能达到0.62 V和900 mW/m2,与未改性碳刷相比分别提高了近24%和133%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵婷
邱峥辉
郑纪勇
蔺存国
关键词:  微生物燃料电池  碳纤维刷  聚吡咯  石墨烯  产电    
Abstract: Carbon fiber brush is taken as the modification object to improve its power generation performance to solve the low output power problem of microbial fuel cells.Polypyrrole film grows on the surface of carbon fiber by employing in-situ chemical polymerization method, which enhances significantly the biocompatibility of the electrode, and it is conducive to the attachment and reproduction of electricity producing microorganisms on the electrode surface.Furthermore, the addition of graphene on the surface of carbon fiber improves the specific surface area and conductivity of the electrode.Under the synergistic effect of polypyrrole and graphene, the power generation performance of microbial fuel cells is greatly improved.The maximum output voltage and maximum output power density can reach 0.62 V and 900 mW·m-2, respectively, which are nearly 24% and 133% higher than that of unmodified carbon brush.
Key words:  microbial fuel cells    carbon fiber brush    polypyrrole    graphene    electricity generation
收稿日期:  2020-11-23      修回日期:  2021-08-21           出版日期:  2021-10-20
ZTFLH:  TM911.45  
通讯作者:  蔺存国(1973-),男,博士,研究员,主要从事生物材料研究,通讯联系人,lincg@sunrui.net。    E-mail:  lincg@sunrui.net
作者简介:  赵婷(1995-),女,硕士研究生,研究方向为微生物腐蚀,zhaoting@mail.nwpu.edu.cn
引用本文:    
赵婷, 邱峥辉, 郑纪勇, 蔺存国. 聚吡咯基改性碳刷电极在微生物燃料电池中的应用研究[J]. 现代化工, 2021, 41(10): 186-190,195.
ZHAO Ting, QIU Zheng-hui, ZHENG Ji-yong, LIN Cun-guo. Application of polypyrrole modified carbon brush electrode in microbial fuel cells. Modern Chemical Industry, 2021, 41(10): 186-190,195.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.10.038  或          https://www.xdhg.com.cn/CN/Y2021/V41/I10/186
[1] Palanisamy G,Jung H Y,Sadhasivam T,et al.A comprehensive review on microbial fuel cell technologies:Processes,utilization,and advanced developments in electrodes and membranes[J].Journal of Cleaner Production,2019,221:598-621.
[2] Logan B,Cheng S,Watson V,et al.Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J].Environmental Science & Technology,2007,41(9):3341-3346.
[3] Feng Y,Yang Q,Wang X,et al.Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J].Journal of Power Sources,2010,195(7):1841-1844.
[4] Zhao N,Ma Z,Song H,et al.Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells[J].International Journal of Hydrogen Energy,2018,43(37):17867-17872.
[5] Xie Y,Ma Z,Song H,et al.Improving the performance of microbial fuel cells by reducing the inherent resistivity of carbon fiber brush anodes[J].Journal of Power Sources,2017,348(30):193-200.
[6] Zhao N,Ma Z,Song H,et al.Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell[J].Electrochimica Acta,2019,296:69-74.
[7] Li X,Hu M,Zeng L,et al.Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells[J].Biosensors and Bioelectronics,2019,145:111727.
[8] De Faria D L A,Venâncio Silva S,De Oliveira M T.Raman microspectroscopy of some iron oxides and oxyhydroxides[J].Journal of Raman Spectroscopy,1997,28(11):873-878.
[9] Chen F,Shi G,Fu M,et al.Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film[J].Synthetic Metals,2003,132(2),125-132.
[10] Wang X,Cheng S,Feng Y,et al.Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J].Environmental science & Technology,2009,43(17):6870-6874.
[1] 王梦雅, 李世友, 东红, 张宁霜. 石墨烯基复合材料在超级电容器中的应用[J]. 现代化工, 2021, 41(S1): 54-57.
[2] 王军, 李想, 邓庆健, 王西明, 张响, 孙笼笼, 刘栓. 耐凝露石墨烯涂料在输气管道中的防腐应用[J]. 现代化工, 2021, 41(S1): 226-230.
[3] 马懿卿, 冯新根, 马清杰, 张瑶, 王磊, 赖小娟, 张引引. 氧化石墨烯/SiO2复合材料改性水性聚氨酯的制备及性能研究[J]. 现代化工, 2021, 41(9): 96-100.
[4] 罗迎新, 李翔, 张博稳, 颜学敏, 张研, 邓晓清. 铁氮掺杂石墨烯的制备及其氧还原性能研究[J]. 现代化工, 2021, 41(7): 128-132.
[5] 张洪武, 韩艳辉, 郭琳, 孟迎, 胡慧敏, 李伟斌. 绿色节能背景下碳气凝胶的发展及应用[J]. 现代化工, 2021, 41(6): 60-64.
[6] 余杨, 王黎, 鲁逸飞, 胡雨莎, 廖梦根. 碳纳米管/氧化石墨烯复合电极制备及除镉研究[J]. 现代化工, 2021, 41(6): 134-139.
[7] 王义安, 王超, 林华, 张学洪, Kong CHHUON. 人工湿地与微生物燃料电池耦合系统的研究进展[J]. 现代化工, 2021, 41(3): 21-25.
[8] 陈稳稳, 牛恒, 刘中良. 一体式无粘结剂rGO@MnO2不锈钢纤维毡空气阴极的制备[J]. 现代化工, 2021, 41(3): 88-91.
[9] 赵国庆, 袁钊, 王连, 郭卓. NiCoP/NSRGO复合材料的制备及其电催化性能研究[J]. 现代化工, 2021, 41(2): 155-160.
[10] 秦洪伟, 赵文鹏, 刘妍, 连爽, 尤国红. 纳米银石墨烯多壁碳纳米管复合修饰电极检测双酚A[J]. 现代化工, 2021, 41(2): 261-264.
[11] 高敏, 万梓宇, 张卫红, 管琪雯, 杜晨辉. 氧化石墨烯负载吡啶基碱性离子液体催化合成碳酸二甲酯的研究[J]. 现代化工, 2021, 41(10): 118-122.
[12] 刘登登, 朱开金, 谭俊华, 晋日亚, 王超. 烷基化氧化石墨烯/正十八烷微胶囊的制备及性能表征[J]. 现代化工, 2021, 41(10): 139-143.
[13] 林晓雪, 张妍, 张大帅, 宋军军, 李晨, 张苏敏, 孙天一, 张小朋, 史载锋, 林强. 基于石墨烯制备超疏水复合材料的研究进展[J]. 现代化工, 2020, 40(S1): 22-25,32.
[14] 刘远峰, 张秀玲, 李从举. 微生物燃料电池技术及其应用研究进展[J]. 现代化工, 2020, 40(9): 20-24,29.
[15] 付凤艳, 程敬泉, 张杰, 高志华, 张素芳. 季铵盐化氧化石墨烯复合磺化聚磷腈质子交换膜的制备与表征[J]. 现代化工, 2020, 40(9): 148-153.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn