Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (9): 107-111,117    DOI: 10.16606/j.cnki.issn0253-4320.2021.09.022
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
改性不同形貌天然黏土负载纳米金催化剂的制备及催化性能研究
谢艳玲, 祝琳华, 司甜
昆明理工大学化学工程学院, 云南 昆明 650500
Preparation of modified natural clay supported gold nanoparticles catalyst and study on its catalytic properties
XIE Yan-ling, ZHU Lin-hua, SI Tian
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  PDF (5884KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以有机硅烷接枝改性埃洛石纳米管(HNTs)和层状高岭土(Kaolin)为纳米金的载体、氯金酸为前体,通过液相还原法制备得到负载型金催化剂。以环己烷液相选择性氧化为模型反应,考察了还原剂的种类和载体的形貌对金催化剂催化性能的影响。结果表明,当纳米金的理论负载质量分数为1.5%时,以管状埃洛石为载体、NaBH4为还原剂制备得到的金催化剂样品1.5% Au/AE-HNTs上纳米金呈高度分散状态,平均粒径为2.6 nm;在模型反应中催化氧化性能较好,其中KA油的选择性达到83.06%,环己烷的转化率达到9.6%,且XPS表征结果显示Au0为主要催化活性价态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢艳玲
祝琳华
司甜
关键词:  负载型金催化剂  改性埃洛石  高岭土  环己烷  液相选择性氧化反应    
Abstract: The supported nano-gold catalysts are obtained through liquid phase reduction method by using organosilane modified halloysite nanotubes (HNTs) and layered kaolin as carriers,and chloroauric acid as precursor.The liquid phase selective oxidation of cyclohexane is taken as a model reaction,the effects of the type of reducing agent and the morphology of carriers on the catalytic performance of the catalyst are investigated.It turns out that nano-gold disperses highly on the prepared 1.5% Au/AE-HNTs,with an average particle size of 2.6 nm only when the theoretical load of nano-gold is 1.5 wt%,tubular HNTs is used as the carrier,and NaBH4 is used as reducing agent.The 1.5% Au/AE-HNTs catalyst exhibits better catalytic oxidation performance in the model reaction,over which,the selectivity of KA oil reaches 83.06%,and the conversion of cyclohexane reaches 9.6%.XPS characterization results show that Au0 is the main catalytic active valence state.
Key words:  supported gold catalyst    modified halloysite    kaolin    cyclohexane    liquid phase selective oxidation reaction
收稿日期:  2020-10-04      修回日期:  2021-07-10           出版日期:  2021-09-20
ZTFLH:  TQ452  
基金资助: 国家自然科学基金(21166010)
通讯作者:  祝琳华(1967-),女,博士,教授,主要研究方向为新型催化材料的制备及其性能研究,通讯联系人,hualing67731@126.com    E-mail:  hualing67731@126.com
作者简介:  谢艳玲(1994-),女,硕士研究生,主要研究方向为化工催化材料,2637707872@qq.com
引用本文:    
谢艳玲, 祝琳华, 司甜. 改性不同形貌天然黏土负载纳米金催化剂的制备及催化性能研究[J]. 现代化工, 2021, 41(9): 107-111,117.
XIE Yan-ling, ZHU Lin-hua, SI Tian. Preparation of modified natural clay supported gold nanoparticles catalyst and study on its catalytic properties. Modern Chemical Industry, 2021, 41(9): 107-111,117.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.09.022  或          https://www.xdhg.com.cn/CN/Y2021/V41/I9/107
[1] 王东辉,程代云,赫郑平.纳米金催化剂及其应用[M].北京:国防工业出版社,2006:1-20.
[2] Liu L C,Arenal R,Meira D M,et al.Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane[J].Chemical Communications,2019,55(11):1607-1610.
[3] Haruta M,Yamada N,Kobayashi T,et al.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J].Journal of Catalysis,1989,115(2):301-309.
[4] 张杨子.LDHs负载的金催化剂的催化性能研究[D].昆明:昆明理工大学,2015.
[5] Haruta M.Size- and support-dependency in the catalysis of gold[J].Catalysis Today,1997,36(1):153-166.
[6] Bamwenda G R,Tsubota S,Nakamura T,et al.The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation[J].Catalysis Letters,1997,44(1):83-87.
[7] Arrii S,Morfin F,Renouprez A J,et al.Oxidation of CO on gold supported catalysts prepared by laser vaporization:direct evidence of support contribution[J].Journal of the American Chemical Society,2004,126(4):1199-1205.
[8] Corma A,Garcia H.Supported gold nanoparticles as catalysts for organic reactions[J].Chemical Society Reviews,2008,37(9):2096-2126.
[9] Mirmohamadsadeghi S,Kaghazchi T,Soleimani M,et al.An efficient method for clay modification and its application for phenol removal from wastewater[J].Applied Clay Science,2012,59-60:8-12.
[10] Alshameri A,He H,Zhu J,et al.Adsorption of ammonium by different natural clay minerals:Characterization,kinetics and adsorption isotherms[J].Applied Clay Science,2018,159:83-93.
[11] Rutkai G,Makó E,Kristóf T.Simulation and experimental study of intercalation of urea in kaolinite[J].Journal of Colloid and Interface Science,2009,334(1):65-69.
[12] 曹青,李洪贺.三种有机插层剂对高岭土的改性研究[J].世界科技研究与发展,2014,36(6):647-651.
[13] Bediako E G,Nyankson E,Dodooarhin D,et al.Modified halloysite nanoclay as a vehicle for sustained drug delivery[J].Heliyon,2018,4(7):1-21.
[14] Massaro M,Cavallaro G,Colletti C G,et al.Chemical modification of halloysite nanotubes for controlled loading and release[J].Journal of Materials Chemistry.B,2018,6(21):1-20.
[15] Yuan P,Tan D,Annabibergaya F,et al.Properties and applications of halloysite nanotubes:recent research advances and future prospects[J].Applied Clay Science,2015,112-113:75-93.
[16] Zhang Y,Bai L,Cheng C,et al.A novel surface modification method upon halloysite nanotubes:A desirable cross-linking agent to construct hydrogels[J].Applied Clay Science,2019,182:105259.
[17] 纪阳,刘钦甫,张浩,等.N-(β-氨乙基)-γ-氨丙基三甲氧基硅烷嫁接高岭石[J].硅酸盐学报,2015,43(8):1150-1155.
[18] Peixoto A F,Fernandes A C,Pereira C,et al.Physicochemical characterization of organosilylated halloysite clay nanotubes[J].Microporous and Mesoporous Materials,2016,219:145-154.
[19] 谢娟,冯如斌,赵蔚,等.负载型纳米金催化剂的合成、表征及性能研究[J].黄金,2010,31(8):4-7.
[20] Zhu K,Hu J,Richards R M,et al.Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica[J].Catalysis Letters,2005,100(3):195-199.
[21] 张学云,祝琳华,司甜.埃洛石负载的纳米金可控制备及对环己烷选性氧化的催化性能[J].化工进展,2020,39(5):1756-1764.
[22] 王翠花.新型纳米金催化剂的合成及其催化环己烷氧化性能研究[D].上海:华东理工大学,2013.
[23] Mouni L,Belkhiri L,Bollinger J,et al.Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin:Kinetic and equilibrium studies[J].Applied Clay Science,2018,153:38-45.
[24] 樊聪慧,黄亚继,等.改性高岭土捕集CdCl2、PbCl2蒸气[J].化工进展,2020,39(4):1558-1566.
[25] 格格日乐,照日格图,阿古拉.xCeO2/高岭土催化剂上丙烷氧化脱氢制丙烯[J].工业催化,2017,25(12):38-43.
[26] Chen X J,Hu D C,Zhang Z L,et al.In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating[J].Journal of Alloys and Compounds,2019,811:151986.
[1] 钱俊峰, 张益峰, 韦梅峻, 钟兆雅, 何明阳, 陈群. Ni/γ-Al2O3的制备及其催化邻苯二甲酸二异壬酯加氢的研究[J]. 现代化工, 2021, 41(7): 179-184.
[2] 黄锦玉, 孙波, 孙义高, 张印民, 丁大千, 张永锋. 镍系低温SCR脱硝催化剂载体与助剂的研究进展[J]. 现代化工, 2021, 41(1): 34-37.
[3] 刘佳鑫, 姚治国, 李继新, 郭立颖. 响应面法优化邻羟基环己基丙烯酸酯的合成[J]. 现代化工, 2020, 40(S1): 98-101,106.
[4] 李海莲, 史俊杰, 欧舒婷, 苏慧娟, 祁彩霞. Au/Pr(OH)3和Au/Pr6O11催化剂的制备及其在CO氧化中的性能研究[J]. 现代化工, 2020, 40(3): 82-87.
[5] 胡盛. 魔芋接枝丙烯酸-丙烯酰胺/高岭土复合材料的制备及其释药性能[J]. 现代化工, 2020, 40(2): 123-127.
[6] 杨权成, 弓志明, 毛艳宇, 石建军, 郗朋, 张开永, 唐利刚, 段宏扬. g-C3N4/煤系高岭土复合材料的制备及可见光催化氧化As(Ⅲ)的研究[J]. 现代化工, 2020, 40(12): 101-106.
[7] 宋洁, 杨通, 牛育华, 王晨, 李莹莹, 朱军峰. HA/AA/无机填料三元高吸水树脂的制备及性能[J]. 现代化工, 2019, 39(7): 122-126.
[8] 史海, 赵许群, 邹展. Ru/C催化对苯二甲酸二甲酯加氢制1,4-环己烷二甲酸二甲酯[J]. 现代化工, 2019, 39(3): 185-188.
[9] 唐建可, 翟丽军. 分壁式萃取精馏分离环己烷-环己烯的模拟与优化[J]. 现代化工, 2018, 38(5): 215-218.
[10] 张波, 许松林. 萃取精馏分离丙酮-环己烷共沸体系的模拟与实验[J]. 现代化工, 2018, 38(3): 218-222.
[11] 马春蕾, 王琦, 王曼, 唐建可. 完全热集成变压精馏分离环己烷-正丙醇的模拟[J]. 现代化工, 2018, 38(12): 222-225.
[12] 毛远洪, 曹芮, 钱俊峰, 肖树萌, 谢京燕, 何明阳, 陈群. Ru-Mn/γ-Al2O3催化剂制备及合成环己烷二甲酸二异壬酯工艺研究[J]. 现代化工, 2017, 37(12): 130-134.
[13] 周茁, 刘明慧, 曹庆胜, 朱学栋. 高岭土水热合成ZSM-5及其在甲醇制芳烃中的应用[J]. 现代化工, 2017, 37(1): 83-87.
[14] 徐倩, 董朝阳, 潘大海, 李瑞丰. Cr/SBA-15的优化合成及其环己烷氧化性能研究[J]. 现代化工, 2016, 36(2): 55-58.
[15] 戴昕, 虞昊, 索潇萌, 李睿, 叶青. 以环己烷为夹带剂反应精馏合成丙酸丙酯的模拟研究[J]. 现代化工, 2016, 36(2): 156-158.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn