Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (8): 243-247    DOI: 10.16606/j.cnki.issn0253-4320.2021.08.049
  分析测试 本期目录 | 过刊浏览 | 高级检索 |
基于纳米金的汞离子传感器研究进展
李岩1,2,3, 吴鹏2, 钟鹭斌1,2,3, 郑煜铭2,3
1. 福建农林大学资源与环境学院, 福建 福州 350002;
2. 中国科学院城市环境研究所, 中国科学院城市污染物转化重点实验室, 福建 厦门 361021;
3. 中国科学院大学, 北京 100049
Research progress on Hg2+ sensors based on gold nanoparticles
LI Yan1,2,3, WU Peng2, ZHONG Lu-bin1,2,3, ZHENG Yu-ming2,3
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
2. CAS Key Laboratory of Urban Pollutants Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
下载:  PDF (2713KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了近年来基于纳米金的Hg2+传感器研究进展,包括比色法、荧光法、电化学法和表面增强拉曼散射(SERS)法,详述了各种传感器的机理及优缺点,并对未来的挑战和发展机遇进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李岩
吴鹏
钟鹭斌
郑煜铭
关键词:  纳米金  汞离子  传感器  比色法  荧光法  电化学法  表面增强拉曼散射    
Abstract: In this review, research progress in the development of gold nanoparticle based Hg2+ sensors in recent years are summarized, with a special focus on colorimetry, fluorimetry, electrochemistry and surface enhanced Raman scattering (SERS). Besides highlighting the working principles and characteristics of various sensors, the future challenge and prospect of next-generation Hg2+ sensors are also discussed.
Key words:  gold nanoparticles    mercuric ion    sensor    colorimetry    fluorimetry    electrochemistry    surface enhanced Raman scattering
收稿日期:  2020-09-29      修回日期:  2021-06-07           出版日期:  2021-08-20
ZTFLH:  X832  
基金资助: 国家自然科学基金项目(21507124,51578525,5153000136)
通讯作者:  钟鹭斌(1984-),男,博士,副研究员,研究方向为静电纺纳米纤维结构设计及其应用、纳米材料自组装、基于表面增强拉曼的污染物快速检测技术,通讯联系人,lbzhong@iue.ac.cn。    E-mail:  lbzhong@iue.ac.cn
作者简介:  李岩(1997-),女,硕士生
引用本文:    
李岩, 吴鹏, 钟鹭斌, 郑煜铭. 基于纳米金的汞离子传感器研究进展[J]. 现代化工, 2021, 41(8): 243-247.
LI Yan, WU Peng, ZHONG Lu-bin, ZHENG Yu-ming. Research progress on Hg2+ sensors based on gold nanoparticles. Modern Chemical Industry, 2021, 41(8): 243-247.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.08.049  或          https://www.xdhg.com.cn/CN/Y2021/V41/I8/243
[1] 王晨希, 黄晶, 朱君. 长江(镇江段)水体和水生生物中汞的污染现状与生态风险评价研究[J]. 环境科学与管理, 2019, 44(8):191-194.
[2] 许秀艳, 朱红霞, 于建钊, 等. 环境中汞化学形态分析研究进展[J]. 环境化学, 2015, 34(6):1086-1094.
[3] 杨英伟, 屈撑囤, 刘鲁珍. 水体汞污染的危害及其防治技术进展[J]. 石油化工应用, 2015, 34(6):4-8.
[4] Bao H M, Fu H, Zhou L, et al. Rapid and ultrasensitive surface-enhanced Raman spectroscopy detection of mercury ions with gold film supported organometallic nanobelts[J]. Nanotechnology, 2020, 31(15):155501.
[5] Yeh Y C, Creran B, Rotello V M. Gold nanoparticles:Preparation, properties, and applications in bionanotechnology[J]. Nanoscale, 2012, 4(6):1871-1880.
[6] Li N, Zhao P X, Astruc D. Anisotropic gold nanoparticles:Synthesis, properties, applications, and toxicity[J]. Angewandte Chemie International Edition, 2014, 53(7):1756-1789.
[7] 张婷婷. 生物传感器检测镉离子的研究进展[J]. 生命的化学, 2017, 37(4):509-514.
[8] 赵灵芝, 张成孝. 基于纳米金的比色法在生理活性分子分析中的应用进展[J]. 化学试剂, 2014, 36(9):801-805, 842.
[9] Priyadarshini E, Pradhan N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions:A review[J]. Sensors and Actuators B:Chemical, 2017, 238:888-902.
[10] Duan J L, Zhan J H. Recent developments on nanomaterials-based optical sensors for Hg2+ detection[J]. Science China-Materials, 2015, 58(3):223-240.
[11] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles[J]. Angewandte Chemie-International Edition, 2007, 46(22):4093-4096.
[12] Chen L, Lou T T, Yu C W, et al. N-1-(2-mercaptoethyl)thymine modification of gold nanoparticles:A highly selective and sensitive colorimetric chemosensor for Hg2+[J]. Analyst, 2011, 136(22):4770-4773.
[13] Chen Y L, Han S H, Yang S H, et al. Rhodanine stabilized gold nanoparticles for sensitive and selective detection of mercury(Ⅱ)[J]. Dyes and Pigments, 2017, 142:126-131.
[14] Liu C W, Hsieh Y T, Huang C C, et al. Detection of mercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles[J]. Chemical Communications, 2008, 19:2242-2244.
[15] Memon A G, Zhou X H, Liu J C, et al. Utilization of unmodified gold nanoparticles for label-free detection of mercury(Ⅱ):Insight into rational design of mercury-specific oligonucleotides[J]. Journal of Hazardous Materials, 2017, 321:417-423.
[16] Tang J, Wu P, Hou X D, et al. Modification-free and N-acetyl-L-cysteine-induced colorimetric response of AuNPs:A mechanistic study and sensitive Hg2+ detection[J]. Talanta, 2016, 159:87-92.
[17] Memon A G, Xing Y P, Zhou X H, et al. Ultrasensitive colorimetric aptasensor for Hg2+ detection using Exo-Ⅲ assisted target recycling amplification and unmodified AuNPs as indicators[J]. Journal of Hazardous Materials, 2020, 384:120948.
[18] Darbandi A, Datta D, Patel K, et al. Molecular beacon anchored onto a graphene oxide substrate[J]. Nanotechnology, 2017, 28(37):375501.
[19] Ma X M, Wang Z, He S, et al. L-Cysteine modified gold nanoparticles for tube-based fluorometric determination of mercury(Ⅱ) ions[J]. Microchimica Acta, 2019, 186(9):632.
[20] 田春霞. 用于检测汞离子的纳米光学传感器的研究进展[J]. 理化检验:化学分册, 2017, 53(10):1234-1240.
[21] Tang Y C, Ding Y, Wu T, et al. A turn-on fluorescent probe for Hg2+ detection by using gold nanoparticle-based hybrid microgels[J]. Sensors and Actuators B:Chemical, 2016:228:767-773.
[22] Sun B, Jiang X X, Wang H Y, et al. A surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion(Ⅱ) from real water samples in sensitive, specific, recyclable and reproducible manners[J]. Analytical Chemistry, 2015, 87(2):1250-1256.
[23] Senapati T, Senapati D, Singh A K, et al. Highly selective SERS probe for Hg(Ⅱ) detection using tryptophan-protected popcorn shaped gold nanoparticles[J]. Chemical Communications, 2011, 47(37):10326-10328.
[24] Guerrini L, Rodriguez-Loureiro I, Correa-Duarte M A, et al. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy:Identification and quantification of inorganic- and methyl-mercury in water[J]. Nanoscale, 2014, 6(14):8368-8375.
[25] Li C N, Wang X L, Liang A H, et al. A simple gold nanoplasmonic SERS method for trace Hg2+ based on aptamer-regulating graphene oxide catalysis[J]. Luminescence, 2018, 33(6):1113-1121.
[26] Bui M P N, Brockgreitens J, Ahmed S, et al. Dual detection of nitrate and mercury in water using disposable electrochemical sensors[J]. Biosensors and Bioelectronics, 2016, 85:280-286.
[27] Guan P, Guo P R, Liu N, et al. The preparation of a flexible AuNP modified carbon cloth electrode and its application on electrochemical detection of Hg(Ⅱ) by continuous flow in environmental water[J]. Analyst, 2018, 143(18):4436-4441.
[28] Miao P, Liu L, Li Y, et al. A novel electrochemical method to detect mercury(Ⅱ) ions[J]. Electrochemistry Communications, 2009, 11(10):1904-1907.
[29] Wang N, Lin M, Dai H X, et al. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure[J]. Biosensors and Bioelectronics, 2016, 79:320-326.
[1] 王野, 聂志国, 王欢. 纳米材料电化学传感器检测重金属的研究进展[J]. 现代化工, 2021, 41(6): 237-242.
[2] 赖宇明. 金纳米星的制备及对塑化剂的快速检测[J]. 现代化工, 2021, 41(4): 234-237.
[3] 喻昌木, 张荣, 卢小鸾, 孙晓霞, 杨敏, 彭黔荣. 金属有机框架纳米材料及在生物传感器中的应用研究进展[J]. 现代化工, 2021, 41(2): 33-37.
[4] 张春晓, 唐逸飞. 纳米金负载两性粘胶纤维的制备及催化性能研究[J]. 现代化工, 2021, 41(2): 177-182.
[5] 关桦楠, 薛悦, 刘博, 宋岩, 彭勃, 吴巧艳, 徐丽萍, 瑙阿敏. 新型巯基化适配体修饰金纳米粒子比色检测饮用水中汞离子的研究[J]. 现代化工, 2021, 41(2): 256-260.
[6] 张璐, 信熙卿, 魏白. 反应型香豆素探针的合成及其对废水中汞离子的检测[J]. 现代化工, 2021, 41(1): 239-242.
[7] 任伟, 吕娜伟. NaCl颗粒对多孔PDMS薄膜构建柔性传感器灵敏度和响应特性的影响[J]. 现代化工, 2020, 40(8): 176-179.
[8] 李玲芳, 尹俊霞, 贾桥, 马翔, 王琦. 二氧化锰纳米颗粒比色法测定谷胱甘肽[J]. 现代化工, 2020, 40(8): 218-220,226.
[9] 陈彦广, 徐瑞晗, 吴凯, 于加蒙, 邓冀童, 张亚男. 纳米金属氧化物的合成及其催化氧化有机物的研究进展[J]. 现代化工, 2020, 40(7): 30-35.
[10] 刘鹏, 刘先军, 刘淑芝, 崔宝臣. 环境污染物分子印迹电化学传感器研究进展[J]. 现代化工, 2020, 40(6): 29-32.
[11] 王欣如, 张乐, 葛子盼, 王娟, 汪倩倩, 徐维平. Au@Ag纳米三棱锥的制备及对塑化剂的快速检测[J]. 现代化工, 2020, 40(2): 222-225.
[12] 梁志奇, 崔向旭, 张志明, 安立宝. 电纺纳米纤维膜荧光传感器在重金属检测中的应用[J]. 现代化工, 2020, 40(2): 226-230,235.
[13] 田亮亮. 银/氧化铜纳米带/泡沫铜复合电极的制备及其在双氧水电化学传感器中的应用[J]. 现代化工, 2020, 40(12): 127-131,136.
[14] 郑宇, 牛文斌, 赵凯, 王云朋, 张淑芬. 基于ZnO微型多功能传感器的制备及性能研究[J]. 现代化工, 2020, 40(11): 122-126.
[15] 谢晓旭, 王彦, 诸静, 于俊荣, 胡祖明. 基于夹心结构的碳纳米管/石墨烯复合柔性导电纤维的制备及其应用[J]. 现代化工, 2020, 40(10): 188-192.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn