Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (8): 208-213    DOI: 10.16606/j.cnki.issn0253-4320.2021.08.041
  工业技术 本期目录 | 过刊浏览 | 高级检索 |
3 MPa分段式反应吸附耦合的氨合成工艺模拟
朱明, 梅华
南京工业大学化工学院, 江苏 南京 210009
Simulation of 3 MPa multi-stage reaction-adsorption coupled process for ammonia synthesis
ZHU Ming, MEI Hua
College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
下载:  PDF (1936KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了3 MPa分段式反应吸附耦合的氨合成工艺,即将反应塔和吸附塔拆分成3份,并以"反应1-吸附1-反应2-吸附2-反应3-吸附3"的方式交替串联。通过这种方式,分段耦合工艺可"突破"热力学平衡限制,实现较高的回路氨净值。使用Aspen Plus对该工艺进行了模拟计算,并与相同氨产量下的10 MPa布朗工艺氨合成回路、3 MPa单段式反应吸附耦合的氨合成回路进行比较,结果表明,分段耦合工艺可将回路氨净值从6.00%提高至15.04%,入反应塔气量降低56.22%,循环压缩机功率降低46.37%,具有明显的节能减排效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱明
梅华
关键词:  合成氨  反应吸附耦合  Aspen Plus  模拟  低压    
Abstract: An ammonia synthesis process using multi-stage reaction-adsorption coupled method under 3 MPa is proposed. It means that both reaction tower and adsorption tower are divided into three parts, and connected in the form of "reaction 1-adsorption 1-reaction 2-adsorption 2-reaction 3-adsorption 3". The proposed method can break through the limitation of thermal equilibrium, and achieve a higher net ammonia concentration. Aspen Plus software is employed to simulate this process, which is compared with ammonia synthesis processes respectively using 10 MPa Brown method and 3 MPa single-stage reaction-adsorption coupled method under the same ammonia production. It is shown from the results that the process using multi-stage reaction-adsorption method can increase the net ammonia concentration from 6% to 15.04%, drop the reaction tower inlet flow rate by 56.22%, and reduce the power consumption of recycle compressor by 46.37%. It shows a significant effect in energy conservation and emission reduction.
Key words:  synthetic ammonia    reaction-adsorption coupling    Aspen Plus    simulation    low pressure
收稿日期:  2020-09-14      修回日期:  2021-05-27           出版日期:  2021-08-20
ZTFLH:  TQ113.2  
基金资助: 江苏省高等学校自然科学面上项目(19KJB530006)
通讯作者:  梅华(1970-),男,博士,教授,研究方向为催化加氢及吸附分离,通讯联系人,meihua@njtech.edu.cn。    E-mail:  meihua@njtech.edu.cn
作者简介:  朱明(1984-),男,博士,讲师,研究方向为传质分离工程,averyisgood@163.com
引用本文:    
朱明, 梅华. 3 MPa分段式反应吸附耦合的氨合成工艺模拟[J]. 现代化工, 2021, 41(8): 208-213.
ZHU Ming, MEI Hua. Simulation of 3 MPa multi-stage reaction-adsorption coupled process for ammonia synthesis. Modern Chemical Industry, 2021, 41(8): 208-213.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.08.041  或          https://www.xdhg.com.cn/CN/Y2021/V41/I8/208
[1] Wagner K, Malmali M, Smith C, et al. Column absorption for reproducible cyclic separation in small scale ammonia synthesis[J]. AIChE Journal, 2017, 63(7):3058-3068.
[2] Smith C, McCormick A V, Cussler E L. Optimizing the conditions for ammonia production using absorption[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4):4019-4029.
[3] Ojha D K, Kale M J, McCormick A V, et al. Integrated ammonia synthesis and separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23):18785-18792.
[4] Malmali M, Wei Y, McCormick A, et al. Ammonia synthesis at reduced pressure via reactive separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(33):8922-8932.
[5] 沈天洋, 何红军, 刘作松, 等. 10 MPa日产千吨冷凝法吸附法耦合分离氨的氨合成工艺模拟[J]. 现代化工, 2020, 40(3):212-216.
[6] Malmali M, Reese M, McCormick A V, et al. Converting wind energy to ammonia at lower pressure[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1):827-834.
[7] Reese M, Marquart C, Malmali M, et al. Performance of a small-scale Haber process[J]. Industrial & Engineering Chemistry Research, 2016, 55(13):3742-3750.
[8] Rouwenhorst K H R, Van der Ham A G J, Mul G, et al. Islanded ammonia power systems:Technology review & conceptual process design[J]. Renewable and Sustainable Energy Reviews, 2019, 114:109339.
[9] Malmali M, Giang L, Hendrickson J, et al. Better absorbents for ammonia separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5):6536-6546.
[10] Neveu P, Castaing J. Solid-gas chemical heat pumps:Field of application and performance of the internal heat of reaction recovery process[J]. Heat Recovery Systems and CHP, 1993, 13(3):233-251.
[1] 陈辉, 刘淑芝, 刘先军. 电催化氮还原合成氨催化剂研究进展[J]. 现代化工, 2021, 41(7): 82-85.
[2] 王雁君, 高思亮, 张立博. 芳烃抽提智能优化系统开发及应用[J]. 现代化工, 2021, 41(6): 215-220.
[3] 万子岸, 周媛, 王亦成, 吴灵燕, 王万真, 侯经纬. 利用Aspen Hysys优化常压塔操作条件生产高闪点喷气燃料[J]. 现代化工, 2021, 41(5): 203-207.
[4] 刘海彬, 赵顺雯, 周丽强, 王建. 具有热集成的甲醇三效精馏工艺及其工业应用[J]. 现代化工, 2021, 41(4): 200-204,210.
[5] 杨晓航, 郭明钢, 代岩, 郗元. 净化瓦斯气中氢气和轻烃回收工艺模拟与优化[J]. 现代化工, 2021, 41(2): 235-240.
[6] 王金凡, 潘艳秋, 俞路, 高石磊. 基于改进投影矩阵法的甲醇合成系统数据校正[J]. 现代化工, 2021, 41(2): 241-245,250.
[7] 刘佳男, 李宗衡, 李智, 高雪超. 醋酸乙烯的热泵精馏工艺模拟[J]. 现代化工, 2021, 41(1): 215-218.
[8] 李晓玲, 贾欣, 王辉, 常丽萍, 鲍卫仁, 王建成. 多相Bunsen反应中SO2溶于水和甲苯的模拟研究[J]. 现代化工, 2020, 40(S1): 220-225.
[9] 沈洋. 隔壁萃取精馏分离醋酸乙烯-甲醇的计算机模拟与节能增效[J]. 现代化工, 2020, 40(S1): 250-253.
[10] 龙有, 蒋宇, 林健. 基于原油快速评价及机理模型实现原油加工优化[J]. 现代化工, 2020, 40(S1): 260-263.
[11] 解鲁平, 庹浩, 薛剑, 于风杰, 刘卫星, 高昌保, 李岩, 陈英敦. 轻烃终馏点超标工艺优化研究[J]. 现代化工, 2020, 40(S1): 269-271.
[12] 冷洽, 崔锦泉, 赵超, 刘国臣, 王廷勇. 船舶烟气海水脱硫工艺模拟与优化[J]. 现代化工, 2020, 40(S1): 296-299.
[13] 宋国全, 柴勇利, 杨理. N-甲基吡咯烷酮生产中一甲胺净化回收工艺开发与工业化生产[J]. 现代化工, 2020, 40(9): 222-226.
[14] 李玲芳, 尹俊霞, 贾桥, 马翔, 王琦. 二氧化锰纳米颗粒比色法测定谷胱甘肽[J]. 现代化工, 2020, 40(8): 218-220,226.
[15] 周俊伟, 张雷, 郭林樵. 双效萃取精馏工艺制备无水乙醇的模拟与优化[J]. 现代化工, 2020, 40(7): 221-225.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn