Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (8): 86-90,95    DOI: 10.16606/j.cnki.issn0253-4320.2021.08.018
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
玻璃表面碱催化甲基含氢硅油制备超疏水涂层的研究
庞筱琴1, 方洲1, 贺艳1,2, 崔学民1,2
1. 广西大学化学化工学院, 广西 南宁 530004;
2. 广西石化资源加工及过程强化技术重点实验室, 广西 南宁 530004
Preparation of superhydrophobic coating on glass surface with alkali catalyzed polymethylhydrosiloxane
PANG Xiao-qin1, FANG Zhou1, HE Yan1,2, CUI Xue-min1,2
1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
2. Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, Nanning 530004, China
下载:  PDF (3554KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 用浓度1、5、10 mol/L的KOH活化玻璃表面,通过碱催化甲基含氢硅油(PMHS)的水解和缩合反应,在玻璃表面构建出具有自洁功能的超疏水涂层。通过SEM观察发现,在浓度为10 mol/L KOH、120℃条件下改性2 h的超疏水涂层性能最佳。利用FT-IR、XPS、SEM、EDS对PMHS进行表征,结果表明,OH-不仅能破坏玻璃的晶格使表面暴露出活性—OH位点,还能催化PMHS分子水解生成大量活性—Si—OH;2种活性基团发生化学缩合将PMHS单体接枝到玻璃表面,随后PMHS单体自交联形成微-纳纤维涂层。该方法所制超疏水界面接触角高达168°,透光率为91%,具有很强的耐酸、耐磨和自清洁性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞筱琴
方洲
贺艳
崔学民
关键词:  玻璃  超疏水  碱催化  甲基含氢硅油    
Abstract: A superhydrophobic coating with self-cleaning function is prepared by activating glass surface with KOH concentration of 1 mol·L-1, 5 mol·L-1 and 10 mol·L-1, respectively, and through alkali catalyzed hydrolysis and condensation of polymethylhydrosiloxane (PMHS). It is found through SEM observation that the superhydrophobic coating has the best performance when the modification has been carried out under a KOH concentration of 10 mol·L-1 at 120℃ for 2 h. The reaction mechanism of PMHS is analyzed by FT-IR, XPS, SEM, and EDS. It is shown that OH- can destroy the crystal lattice of glass to expose active —OH sites on the surface, and can catalyze the hydrolysis of PMHS molecules to generate a large number of active —Si—OH. Chemical condensation undergoes between these two active groups to graft PMHS monomer onto glass surface, and then PMHS monomers self-polymerize to form micro-nano fiber coating. The superhydrophobic interface prepared by this method has a contact angle of 168° and a light transmittance of 91%, which has strong acid resistance, wear resistance and self-cleaning properties.
Key words:  glass    superhydrophobic    alkali catalysis    polymethylhydrosiloxane
收稿日期:  2020-09-10      修回日期:  2021-06-10           出版日期:  2021-08-20
ZTFLH:  TB306  
基金资助: 国家自然科学基金资助项目(51772055,21566006)
通讯作者:  崔学民(1971-),男,博士,教授,博士生导师,研究方向为地质聚合物反应机理研究与应用,通讯联系人,cui-xm@tsinghua.edu.cn。    E-mail:  cui-xm@tsinghua.edu.cn
作者简介:  庞筱琴(1996-),女,硕士研究生,研究方向为表面材料疏水改性研究,1600461645@qq.com
引用本文:    
庞筱琴, 方洲, 贺艳, 崔学民. 玻璃表面碱催化甲基含氢硅油制备超疏水涂层的研究[J]. 现代化工, 2021, 41(8): 86-90,95.
PANG Xiao-qin, FANG Zhou, HE Yan, CUI Xue-min. Preparation of superhydrophobic coating on glass surface with alkali catalyzed polymethylhydrosiloxane. Modern Chemical Industry, 2021, 41(8): 86-90,95.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.08.018  或          https://www.xdhg.com.cn/CN/Y2021/V41/I8/86
[1] Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 1996, 12(9):2125-2127.
[2] Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551.
[3] Chen J, Zhang L, Zeng Z, et al. Facile fabrication of antifogging, antireflective, and self-cleaning transparent silica thin coatings[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 509:149-157.
[4] Guo P, Zheng Y, Wen M, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials, 2012, 24(19):2642-2648.
[5] 彭华乔, 李林, 夏祖西, 等. 超疏水材料防冰研究进展[J]. 化工新型材料, 2019, 47(11):1-5.
[6] Chen J, Kong Q, Wang J, et al. Preparation of high wear-resisting superamphiphobic robust film by self-assembled monolayer surface reaction[J]. Progress in Organic Coatings, 2018, 117:20-28.
[7] Ebert D, Bhushan B. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2012, 28(31):11391-11399.
[8] Lin Y, Han J, Cai M, et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 2018, 6(19):9049-9056.
[9] Huang W F, Xiao Y L, Huang Z J, et al. Super-hydrophobic polyaniline-TiO2 hierarchical nanocomposite as anticorrosion coating[J]. Materials Letters, 2020, 258:126822.
[10] Liu K, Qi K, Zhao Y, et al. Preparation and properties of super-hydrophobic TiO2&POTS@PP microfiltration membrane for oil/water separation[J]. Materials Letters, 2020, 263:127237.
[11] Steele A, Bayer I, Loth E. Inherently superoleophobic nanocomposite coatings by spray atomization[J]. Nano Letters, 2009, 9(1):501-505.
[12] Jiang C, Zhang Y, Wang Q T. Superhydrophobic polyurethane and silica nanoparticles coating with high transparency and fluorescence[J]. Journal of Applied Polymer Science, 2013, 129(5):2959-2965.
[13] 罗凯, 刘碧桃. 液晶显示器背光源棱镜片吸附不良的创新研究[J]. 电子测试, 2019, (8):139-140.
[14] 张艳文. 太阳能热发电反射镜用超亲水与超疏水薄膜制备及其性能研究[D]. 武汉:武汉理工大学, 2016.
[15] Wen G, Gao X, Tian P, et al. Modifier-free fabrication of durable and multifunctional superhydrophobic paper with thermostability and anti-microbial property[J]. Chemical Engineering Journal, 2018, 346:94-103.
[16] 万良财. 鼻内镜防雾材料研制及防雾机理探讨[D]. 广州:南方医科大学, 2013.
[17] Chen Y, Zhang Y, Shi L, et al. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging[J]. Applied Physics Letters, 2012, 101(3):033701.
[18] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994.
[19] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1):1-8.
[20] Wenzel R N. Surface roughness and contact angle[J]. The Journal of Physical Chemistry, 1949, 53(9):1466-1467.
[21] Das S, Kumar S, Samal S, et al. A review on superhydrophobic polymer nanocoatings:Recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57(8):2727-2745.
[22] Caldona E B, De Leon A C C, Thomas P G, et al. Superhydrophobic rubber-modified polybenzoxazine/SiO2 nanocomposite coating with anticorrosion, anti-ice, and superoleophilicity properties[J]. Industrial & Engineering Chemistry Research, 2017, 56(6):1485-1497.
[23] Junaidi M U M, Azaman S A H, Ahmad N N R, et al. Superhydrophobic coating of silica with photoluminescence properties synthesized from rice husk ash[J]. Progress in Organic Coatings, 2017, 111:29-37.
[24] Holtzinger C, Niparte B, Wä chter S, et al. Superhydrophobic TiO2 coatings formed through a non-fluorinated wet chemistry route[J]. Surface Science, 2013, 617:141-148.
[25] Lai Y, Tang Y, Gong J, et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging[J]. Journal of Materials Chemistry, 2012, 22(15):7420.
[26] Ji H, Chen G, Yang J, et al. A simple approach to fabricate stable superhydrophobic glass surfaces[J]. Applied Surface Science, 2013, 266:105-109.
[27] Wang Q, Hao X, Wu Y, et al. Fluoroalkylsilane grafted porous glass surface for superhydrophobicity and high visible transmittance[J]. Materials Letters, 2019, 257:126734.
[28] Xiong J, Das S N, Kar J P, et al. A multifunctional nanoporous layer created on glass through a simple alkali corrosion process[J]. Journal of Materials Chemistry, 2010, 20(45):10246.
[29] Wang D, Zhang Z, Li Y, et al. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10014-10021.
[30] Si Y, Guo Z. Superhydrophobic nanocoatings:From materials to fabrications and to applications[J]. Nanoscale, 2015, 7(14):5922-5946.
[31] Liu Z H, Pang X Q, Wang K T, et al. Superhydrophobic coatings prepared by the in situ growth of silicone nanofilaments on alkali-activated geopolymers surface[J]. ACS Applied Materials & Interfaces, 2019, 11(25):22809-22816.
[32] Zhang J, Wang A, Seeger S. Universal self-assembly of organosilanes with long alkyl groups into silicone nanofilaments[J]. Polymer Chemistry, 2014, 5(4):1132-1139.
[33] Li F, Du M. Zheng Q. Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating[J]. ACS Nano, 2016, 10(2):2910-2921.
[1] 刘寒霜, 顾正桂, 曹晓艳, 汪凯军. CuO-MgO负载镧基催化剂的制备及其对异丙苯催化氧化性能的研究[J]. 现代化工, 2021, 41(8): 165-172.
[2] 林晓雪, 张妍, 张大帅, 宋军军, 李晨, 张苏敏, 孙天一, 张小朋, 史载锋, 林强. 基于石墨烯制备超疏水复合材料的研究进展[J]. 现代化工, 2020, 40(S1): 22-25,32.
[3] 李锐, 王立达, 孙文, 舒向泉, 贺永鹏, 刘贵昌. 超疏水不锈钢网的制备及其雾水收集性能研究[J]. 现代化工, 2020, 40(11): 92-97.
[4] 李开红, 何垒垒, 王雪莹, 罗清龙, 黄雪莉. Na2SO4·10H2O@SiO2微胶囊的制备及相变过程研究[J]. 现代化工, 2020, 40(11): 98-103.
[5] 胡登峰, 于庆杰. 自愈性超疏水材料研究进展[J]. 现代化工, 2019, 39(9): 40-43,48.
[6] 盛宇, 徐丽慧, 沈勇, 王黎明, 潘虹. 疏水型SiO2/TiO2复合气凝胶的制备及光催化性能研究[J]. 现代化工, 2019, 39(2): 98-102.
[7] 杨统林, 邱祖民, 肖建军, 王海坤, 杨方麒. 超疏水铁表面的制备及其自清洁性能研究[J]. 现代化工, 2018, 38(6): 87-92.
[8] 李亚楠, 安东, 徐冬梅, 冯德鑫. 负载型固体碱催化制备3,4-二甲基呋咱的方法研究[J]. 现代化工, 2018, 38(6): 144-147,149.
[9] 王露, 陈王觅, 衣守志. 纳米隔热保温涂料的制备与性能研究[J]. 现代化工, 2018, 38(4): 165-168.
[10] 陈小昆, 卢春山, 李小年. 芳香酚-甲醇选择性邻位甲基化反应研究进展[J]. 现代化工, 2018, 38(12): 14-18.
[11] 李青, 王世岚, 周波, 王丽红. 无碱高铝硼硅酸盐玻璃澄清工艺研究[J]. 现代化工, 2017, 37(9): 155-158,160.
[12] 孙成, 郑峰伟, 任园园, 李国斌, 苏毅. 黄磷渣资源化利用研究[J]. 现代化工, 2017, 37(8): 28-31.
[13] 丁洪, 张玉树, 郑祥洲, 张晶, 李卫华, 陈德立. 玻璃肥料的研究与应用进展[J]. 现代化工, 2017, 37(3): 14-19,21.
[14] 侯珂珂, 陈新华, 张万强, 赵志明. 超疏水铜网的低成本制备及油水分离应用研究[J]. 现代化工, 2017, 37(2): 137-140,142.
[15] 陈玉龙, 戴子剑, 单春波, 吴涛, 孙冬梅. 玻璃窑炉烟气选择性催化还原脱硝应用[J]. 现代化工, 2017, 37(1): 164-167.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn