Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (8): 37-41    DOI: 10.16606/j.cnki.issn0253-4320.2021.08.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
非均相催化剂制备生物柴油的研究进展
袁铭霞1, 李欣1, 蔺华林1, 韩生1, 薛原1,2
1. 上海应用技术大学化学与环境工程学院, 上海 201418;
2. 上海理工大学材料科学与工程学院, 上海 200093
Research progress on preparation of biodiesel over heterogeneous catalysts
YUAN Ming-xia1, LI Xin1, LIN Hua-lin1, HAN Sheng1, XUE Yuan1,2
1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
下载:  PDF (1321KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 总结了国内外非均相催化剂制备生物柴油的最新进展;介绍了不同非均相催化剂的特性及其催化制备生物柴油的优缺点;最后归纳了非均相催化剂在生物柴油制备过程中存在的问题,并对今后的研究重点及前景做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁铭霞
李欣
蔺华林
韩生
薛原
关键词:  非均相催化剂  生物柴油  酯交换  催化    
Abstract: This review summarizes mainly latest advances in the preparation of biodiesel over heterogeneous catalysts in the world, introduces the characteristics of different heterogeneous catalysts, and their advantages and disadvantages in catalyzing biodiesel preparation, and sums up the existing problems for heterogeneous catalysts in the biodiesel preparation process. Future research focus and prospects in this field are expected.
Key words:  heterogeneous catalyst    biodiesel    transesterification    catalysis
收稿日期:  2020-08-24      修回日期:  2021-06-10           出版日期:  2021-08-20
ZTFLH:  TE65  
基金资助: 上海市晨光计划项目(19CG69);国家自然科学基金面上项目(21878188)
通讯作者:  韩生(1973-),男,博士,教授,研究方向为石油化工,通讯联系人,hansheng654321@sina.com;薛原(1990-),男,博士,实验师,研究方向为生物质能源制备和改性,通讯联系人,sit_xueyuan@163.com。    E-mail:  sit_xueyuan@163.com
作者简介:  袁铭霞(1996-),女,硕士生
引用本文:    
袁铭霞, 李欣, 蔺华林, 韩生, 薛原. 非均相催化剂制备生物柴油的研究进展[J]. 现代化工, 2021, 41(8): 37-41.
YUAN Ming-xia, LI Xin, LIN Hua-lin, HAN Sheng, XUE Yuan. Research progress on preparation of biodiesel over heterogeneous catalysts. Modern Chemical Industry, 2021, 41(8): 37-41.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.08.009  或          https://www.xdhg.com.cn/CN/Y2021/V41/I8/37
[1] Baskar G, Aiswarya R. Trends in catalytic production of biodiesel from various feedstocks[J]. Renewable and Sustainable Energy Reviews, 2016, 57:496-504.
[2] Konwar L J, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts[J]. Renewable and Sustainable Energy Reviews, 2014, 29:546-564.
[3] Bet-Moushoul E, Farhadi K, Mansourpanah Y, et al. Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production[J]. Fuel, 2016, 164(15):119-127.
[4] Sharifah Hanis Yasmin Sayid Abdullah, Nur Hanis Mohamad Hanapi, Azman Azid, et al. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2016, 70:1040-1051.
[5] Konwar L J, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts[J]. Renewable and Sustainable Energy Reviews, 2014, 29:546-564.
[6] Tang Z E, Lim S, Pang Y L, et al. Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production[J]. Renewable Energy, 2020, 158:91-102.
[7] Gil-Carrera L, Browne J D, Kilgallon I, et al. Feasibility study of an off-grid biomethane mobile solution for agri-waste[J]. Applied Energy, 2019, 239:471-481.
[8] Shan R, Lu L, Shi Y, et al. Catalysts from renewable resources for biodiesel production[J]. Energy Conversion and Management, 2018, 178(15):277-289.
[9] Arumugam A, Pooja Sankaranarayanan. Biodiesel production and parameter optimization:An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from calophyllum inophyllum oil[J]. Renewable Energy, 2020, 153:1272-1282.
[10] Bishwajit Changmai, Putla Sudarsanam, Lalthazuala Rokhum. Biodiesel production using a renewable mesoporous solid catalyst[J]. Industrial Crops and Products, 2020, 145:111911.
[11] Silma De S Barros, Wanison A G Pessoa Junior, Ingrity S C Sá, et al. Pineapple (Ananá s comosus) leaves ash as a solid base catalyst for biodiesel synthesis[J]. Bioresource Technology, 2020, 312:123569.
[12] Gohain M, Laskar K, Phukon H, et al. Towards sustainable biodiesel and chemical production:Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves[J]. Waste Management, 2020, 102:212-221.
[13] Correia L M, Saboya R M A, Campelo N d S, et al. Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil[J]. Bioresource Technology, 2014, 151:207-13.
[14] Buasri A, Worawanitchaphong P, Trongyong S, et al. Utilization of scallop waste shell for biodiesel production from palm oil-Optimization using Taguchi method[C]. APCBEE Procedia, 2014, 8:216-221.
[15] Kesserwan F, Ahmad M N, Khalil M, et al. Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production[J]. Chemical Engineering Journal, 2020, 385:123834.
[16] Ya Asş 1 ar F. Biodiesel production via waste eggshell as a low-cost heterogeneous catalyst:Its effects on some critical fuel properties and comparison with CaO[J]. Fuel, 2019, 255:115828.
[17] Paula I Acosta, Roberta R Campedelli, Elder L Correa, et al. Efficient production of biodiesel by using a highly active calcium oxide prepared in presence of pectin as heterogeneous catalyst[J]. Fuel, 2020, 271:117651.
[18] Abdel Dayem H M, Salib B G, El-Hosiny F I. Facile synthesis of hydrothermal stable hierarchically macro-mesoporous hollow microspheres γ-Al2O3-graphene oxide composite:As a new efficient acid-base catalyst for transesterification reaction for biodiesel production[J]. Fuel, 2020, 277:118106.
[19] Qian K, Kumar A, Zhang H, et al. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 2015, 42:1055-1064.
[20] Behera B, Mari Selvam S, Dey B, et al. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst[J]. Bioresource Technology, 2020, 310:123392.
[21] Konwar L J, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts[J]. Renewable and Sustainable Energy Reviews, 2014, 29:546-64.
[22] Lee A F, Bennett J A, Manayil J C, et al. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification[J]. Chemical Society reviews, 2014, 43:7887-7916.
[23] Khiratkar A G, Balinge K R, Patle D S, et al. Transesterification of castor oil using benzimidazolium based Brø nsted acid ionic liquid catalyst[J]. Fuel, 2018, 231:458-467.
[24] Xie W L, Wan F. Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production[J]. Fuel, 2018, 220:248-256.
[25] Pan H, Li H, Zhang H, et al. Acidic ionic liquid-functionalized mesoporous melamine-formaldehyde polymer as heterogeneous catalyst for biodiesel production[J]. Fuel, 2019, 239:886-895.
[26] Saxena V, Sharma S, Pandey L M. Fe(Ⅲ) doped ZnO nano-assembly as a potential heterogeneous nano-catalyst for the production of biodiesel[J]. Materials Letters, 2019, 237:232-235.
[27] 韩东澎. 非均相催化剂合成及生物柴油制备中的应用[D]. 郑州:河南工业大学, 2016.
[28] Singh V, Belova L, Singh B, et al. Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12):Process optimization through response surface methodology (RSM)[J]. Energy Conversion and Management, 2018, 174:198-207.
[1] 蔺建民, 夏鑫, 陶志平. 欧洲生物柴油产品标准体系发展对我国的启示[J]. 现代化工, 2021, 41(8): 1-7.
[2] 陈彪杰, 杨国刚. 甲烷重整技术研究进展[J]. 现代化工, 2021, 41(8): 19-23.
[3] 李涛, 武斌, 李会录, 林贻超. 海水电解析氧反应催化剂的研究进展[J]. 现代化工, 2021, 41(8): 24-28,32.
[4] 庞筱琴, 方洲, 贺艳, 崔学民. 玻璃表面碱催化甲基含氢硅油制备超疏水涂层的研究[J]. 现代化工, 2021, 41(8): 86-90,95.
[5] 杨天华, 程秋香, 苏涛, 刘树伟, 韩磊, 刘亚青. γ-Al2O3性质对费托蜡加氢裂化反应性能的影响[J]. 现代化工, 2021, 41(8): 101-105.
[6] 刘慧敏, 王美慧, 于戈文, 王亚雄, 丁健. 焙烧温度对CuO/ZrO2催化剂催化草酸酯加氢性能的影响[J]. 现代化工, 2021, 41(8): 106-110.
[7] 李靖, 王瑜, 余艳, 邱超, 吴光亮, 陈艳, 杨华美. AlgCa/TiO2凝珠吸附-紫外光催化协同去除水中Cr(Ⅵ)的研究[J]. 现代化工, 2021, 41(8): 128-132,138.
[8] 敬双怡, 侯娜, 范保建, 于玲红, 李卫平, 殷震育. 稀土镨电极处理焦化尾水过程特性研究[J]. 现代化工, 2021, 41(8): 139-144.
[9] 涂林, 覃益民. 米根霉全细胞催化蒎烯环氧化反应的研究[J]. 现代化工, 2021, 41(8): 155-158,164.
[10] 纵宇浩, 常峥峰, 黄力, 王虎, 刘洋, 李金珂, 张东平. Sn的添加对V-Mo/Ti催化剂脱硝及汞氧化性能的影响[J]. 现代化工, 2021, 41(8): 159-164.
[11] 刘寒霜, 顾正桂, 曹晓艳, 汪凯军. CuO-MgO负载镧基催化剂的制备及其对异丙苯催化氧化性能的研究[J]. 现代化工, 2021, 41(8): 165-172.
[12] 张洪雨, 董静贤, 吴雪芹, 徐红, 钟毅, 毛志平, 张琳萍. PVP改性BiOI光催化降解抗生素的研究[J]. 现代化工, 2021, 41(8): 173-176,181.
[13] 冯兰惠, 包木太, 杨玉双, 胡鑫. BiO2-x/Bi2WO6的制备及其超声辅助光催化降解四环素的研究[J]. 现代化工, 2021, 41(8): 182-186,192.
[14] 张亚奇, 付应燕, 钱敏, 代郝江, 陈天云. 自组装Zn、N共掺杂CoP微球作为高效析氢催化剂的研究[J]. 现代化工, 2021, 41(8): 198-202,207.
[15] 张双双, 田跃儒. g-C3N4负载磷钨酸及其光催化固氮性能的研究[J]. 现代化工, 2021, 41(8): 203-207.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn