Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (8): 24-28,32    DOI: 10.16606/j.cnki.issn0253-4320.2021.08.006
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
海水电解析氧反应催化剂的研究进展
李涛1,2, 武斌2, 李会录1, 林贻超2
1. 西安科技大学材料科学与工程学院, 陕西 西安 710054;
2. 中国科学院宁波材料技术与工程研究所, 浙江 宁波 315201
Research progress on catalysts for oxygen evolution reaction through seawater electrolysis
LI Tao1,2, WU Bin2, LI Hui-Lu1, LIN Yi-Chao2
1. College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
下载:  PDF (3402KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了电解水析氧反应(OER)的催化机理;总结了海水电解阳极电极催化剂领域钛(Ti)作基底以及泡沫镍(Ni Foam)作基底的层状双氢氧化物(LDH)和其他非贵金属催化剂材料的最新研究进展;基于研究现状提出了电极材料优化策略,并对非贵金属在海水电解催化剂的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涛
武斌
李会录
林贻超
关键词:  海水电解  电催化剂  析氧反应  非贵金属    
Abstract: The catalytic mechanism of oxygen evolution reaction (OER) is introduced. Latest research progress on the layered double hydroxide (LDH) and other non-precious catalyst materials that both take titanium and nickel foam as conductive substrates, which are used as anode electrode catalyst in seawater electrolysis, is emphasized and summarized. Corresponding optimization strategies for electrode materials are proposed, and a perspective on the application of noble-metal-free in catalysts for seawater electrolysis is presented.
Key words:  seawater electrolysis    electrocatalyst    oxygen evolution reaction    non-precious metals
收稿日期:  2020-08-20      修回日期:  2021-06-06           出版日期:  2021-08-20
ZTFLH:  O643.3  
基金资助: 宁波市自然科学基金项目(2019A610019);宁波市科技创新2025重大专项项目(2018B10028)
通讯作者:  林贻超(1986-),男,博士,副研究员,研究方向为新能源和环境相关材料,通讯联系人,yclin@nimte.ac.cn。    E-mail:  yclin@nimte.ac.cn
作者简介:  李涛(1994-),男,硕士生
引用本文:    
李涛, 武斌, 李会录, 林贻超. 海水电解析氧反应催化剂的研究进展[J]. 现代化工, 2021, 41(8): 24-28,32.
LI Tao, WU Bin, LI Hui-Lu, LIN Yi-Chao. Research progress on catalysts for oxygen evolution reaction through seawater electrolysis. Modern Chemical Industry, 2021, 41(8): 24-28,32.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.08.006  或          https://www.xdhg.com.cn/CN/Y2021/V41/I8/24
[1] Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts[J]. Science, 2014, 345(6204):1593-1596.
[2] Pu Z, Zhao J, Amiinu I S, et al. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction[J]. Energy & Environmental Science, 2019, 12(3):952-957.
[3] Jeong H J, Kim H R, Kim K I, et al. NaOCl produced by electrolysis of natural seawater as a potential method to control marine red-tide dinoflagellates[J]. Phycologia, 2002, 41(6):643-656.
[4] Thangappan R, Sampathkumaran S T. Electrochlorination system:A unique method of prevention of biofouling in seawater desalination[J]. International Journal of Nuclear Desalination, 2008, 3(2):135-142.
[5] Cai J, Song Y, Zang Y, et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides[J]. Science Advances, 2020, 6(1):eaaw8113.
[6] Kuang Y, Kenney M J, Meng Y, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels[J]. Proceedings of the National Academy of Sciences, 2019, 116(14):6624-6629.
[7] Van De Krol R, Grä tzel M. Photoelectrochemical hydrogen production[M]. New York:Springer, 2012.
[8] Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater[J]. International Journal of Hydrogen Energy, 1980, 5(4):401-408.
[9] Izumiya K, Akiyama E, Habazaki H, et al. Surface activation of manganese oxide electrode for oxygen evolution from seawater[J]. Journal of Applied Electrochemistry, 1997, 27(12):1362-1368.
[10] Kato Z, Sato M, Sasaki Y, et al. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis[J]. Electrochimica Acta, 2014, 116:152-157.
[11] Dresp S, Dionigi F, Klingenhof M, et al. Direct electrolytic splitting of seawater:Opportunities and challenges[J]. ACS Energy Letters, 2019, 4(4):933-942.
[12] Fujimura K, Izumiya K, Kawashima A, et al. Anodically deposited manganese-molybdenum oxide anodes with high selectivity for evolving oxygen in electrolysis of seawater[J]. Journal of Applied Electrochemistry, 1999, 29(6):769-775.
[13] Dionigi F, Reier T, Pawolek Z, et al. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis[J]. Chem Sus Chem, 2016, 9(9):962-972.
[14] Wang L P, Wu Q, Van Voorhis T. Acid-base mechanism for ruthenium water oxidation catalysts[J]. Inorganic Chemistry, 2010, 49(10):4543-4553.
[15] Joya K S, de Groot H J M. Biomimetic molecular water splitting catalysts for hydrogen generation[J]. International Journal of Hydrogen Energy, 2012, 37(10):8787-8799.
[16] Mavros M G, Tsuchimochi T, Kowalczyk T, et al. What can density functional theory tell us about artificial catalytic water splitting?[J]. Inorganic Chemistry, 2014, 53(13):6386-6397.
[17] Favaro M, Yang J, Nappini S, et al. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy[J]. Journal of the American Chemical Society, 2017, 139(26):8960-8970.
[18] Hardin W G, Slanac D A, Wang X, et al. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes[J]. The Journal of Physical Chemistry Letters, 2013, 4(8):1254-1259.
[19] De Oliveira-Sousa A, Da Silva M A S, Machado S A S, et al. Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes[J]. Electrochimica Acta, 2000, 45(27):4467-4473.
[20] Fujimura K, Matsui T, Izumiya K, et al. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis[J]. Materials Science and Engineering:A, 1999, 267(2):254-259.
[21] Matsui T, Habazaki H, Kawashima A, et al. Anodically deposited manganese-molybdenum-tungsten oxide anodes for oxygen evolution in seawater electrolysis[J]. Journal of Applied Rlectrochemistry, 2002, 32(9):993-1000.
[22] Ghany N A A, Kumagai N, Meguro S, et al. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis[J]. Electrochimica Acta, 2002, 48(1):21-28.
[23] Yan Z, Song L, Tang M, et al. Oxygen evolution efficiency and chlorine evolution efficiency for electrocatalytic properties of MnO2-based electrodes in seawater[J]. Journal of Wuhan University of Technology:Materials Science, 2019, 34(1):69-74.
[24] Fan G, Li F, Evans D G, et al. Catalytic applications of layered double hydroxides:Recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20):7040-7066.
[25] Yu L, Zhu Q, Song S, et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nature Communications, 2019, 10(1):1-10.
[26] Yu L, Wu L, McElhenny B, et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting[J]. Energy & Environmental Science, 2020, 13(10):3439-3446.
[27] Zhao Y, Jin B, Zheng Y, et al. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis[J]. Advanced Energy Materials, 2018, 8(29):1801926.
[28] Kong D, Wang H, Lu Z, et al. CoSe2 nanoparticles grown on carbon fiber paper:An efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2014, 136(13):4897-4900.
[29] Zhao Y, Jin B, Vasileff A, et al. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis[J]. Journal of Materials Chemistry A, 2019, 7(14):8117-8121.
[30] Song H J, Yoon H, Ju B, et al. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1-xFexP2O7 nanoparticles for alkaline seawater electrolysis[J]. ACS Catalysis, 2019, 10(1):702-709.
[1] 张亚奇, 付应燕, 钱敏, 代郝江, 陈天云. 自组装Zn、N共掺杂CoP微球作为高效析氢催化剂的研究[J]. 现代化工, 2021, 41(8): 198-202,207.
[2] 陈俊池, 张培立. 电沉积CoCuP催化水氧化性能研究[J]. 现代化工, 2021, 41(3): 170-174.
[3] 孙志裕, 黄小琴, 刘国强. 异质结构Co3O4@CoMoO4阵列的制备与析氧性能研究[J]. 现代化工, 2021, 41(3): 202-206,210.
[4] 刘照, 程丽军, 胡鑫, 袁善良, 薄其飞, 张彪, 蒋毅. 钴基催化剂催化燃烧VOCs的研究进展[J]. 现代化工, 2020, 40(7): 36-39,44.
[5] 安亚苹, 刘淑芝, 张梅. 可充锌空气电池非贵金属阴极催化剂研究进展[J]. 现代化工, 2020, 40(3): 36-39.
[6] 张琳琳, 张梅, 刘淑芝. 非贵金属催化剂催化制备对氨基苯酚研究进展[J]. 现代化工, 2020, 40(2): 72-75.
[7] 于忠军, 刘先军, 刘淑芝, 刘畅, 崔宝臣. 由水和氮气直接电化学合成氨电催化剂研究进展[J]. 现代化工, 2020, 40(10): 71-74.
[8] 刘江涛, 姜志浩, 张传玲. 镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究[J]. 现代化工, 2019, 39(12): 89-93,99.
[9] 程凤如, 孙志裕, 熊凡, 罗惜情. Fe掺杂NiO/NiSe2空心纳米球的制备及其析氧性能研究[J]. 现代化工, 2019, 39(11): 145-148.
[10] 李莎莎, 李雯. 常温常压下氮气还原合成氨催化剂的研究进展[J]. 现代化工, 2019, 39(10): 46-50.
[11] 胡燕飞, 张荣荣, 周盼盼, 杨庆华. FeP@PC纳米材料的制备及其析氢反应性能探究[J]. 现代化工, 2019, 39(10): 111-115.
[12] 叶俊辉, 张晓岚, 袁静, 蔡婷, 何丹农. 非贵金属催化剂用于BTX催化燃烧的研究进展[J]. 现代化工, 2018, 38(3): 18-22.
[13] 蒋春燕, 聂明, 田显辉, 李庆. 燃料电池氧还原电催化剂的研究进展[J]. 现代化工, 2016, 36(7): 17-20,22.
[14] 朱昱, 周燕琴, 魏金栋, 张宇, 倪红军. 直接乙醇燃料电池电催化剂研究进展[J]. 现代化工, 2016, 36(4): 18-22,24.
[15] 柏亚成, 陈晔. 高浓度苯酚废水的均相催化湿式氧化研究[J]. 现代化工, 2015, 35(6): 136-138,140.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn