Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (7): 185-190    DOI: 10.16606/j.cnki.issn0253-4320.2021.07.038
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
TBP为萃取剂分离废磷酸铁锂电池中金属锂的研究
王艺博, 阮久莉, 郭玉文, 姚扬, 李妍林
中国环境科学研究院, 国家环境保护生态工业重点实验室, 北京 100012
Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant
WANG Yi-bo, RUAN Jiu-li, GUO Yu-wen, YAO Yang, LI Yan-lin
State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
下载:  PDF (1681KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 LiFePO4/C粉末盐酸浸出液中主要离子为Li+、Fe3+与少量的Cl-,符合TBP萃取Li+必须存在过渡族金属离子与Cl-的理论。探究了TBP萃取Li+的机制以及氯离子供给剂、Fe3+/Li+摩尔比、Cl-浓度与Li+浓度对萃取的影响,得到Li+最佳萃取分离条件。结果表明,以FeCl3+AlCl3为氯离子供给剂,模拟配制酸浸出液中Li+是以[LiFeCl4nTBP的络合形式被萃取;TBP萃取Li+的最佳条件为:溶液中Fe3+/Li+摩尔比为1.5、Cl-浓度为5 mol/L、Li+质量浓度为1 g/L;当相比(O/A)为0.5时,在最佳条件下TBP对LiFePO4/C粉末盐酸浸出液中Li+的二级萃取率达到92%以上,以6 mol/L盐酸为反萃剂三级反萃后Li+反萃率约为93%,反萃后有机相中Fe3+等杂质质量分数低于1%。该方法使废旧磷酸铁锂电池中的锂分离率达到83%以上,实现废旧磷酸铁锂电池中金属锂资源再生的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艺博
阮久莉
郭玉文
姚扬
李妍林
关键词:  废旧磷酸铁锂电池  TBP  金属锂  萃取    
Abstract: To recover lithium metal from cathode active material LiFePO4/C powder in spent lithium iron phosphate batteries,main ions in the hydrochloric acid leaching solution of LiFePO4/C powder are Li+,Fe3+ and a small amount of Cl-,which accords with the theoretical basis that there must be transition metal ions and Cl- when TBP extracts Li+.The mechanism for TBP to extract Li+,and the influences of chloride iron supply agent,Fe3+/Li+ molar ration,Cl- concentration and Li+ concentration on extraction are explored,and the optimal extraction separation conditions for Li+ are obtained.Study results show that using FeCl3+AlCl3 as chloride ion supplier,Li+ in the simulated acid leaching solution is extracted in the complex form of [LiFeCl4nTBP.The optimal extraction conditions for TBP to extract Li+ are as follows:the molar ratio of Fe3+/Li+ in the solution is 1.5,Cl- concentration is 5 mol·L-1,the mass concentration of Li+ is 1 g·L-1.When the ratio of organic phase and aqueous phase (O/A) is 0.5,under the optimal conditions,the secondary extraction rate of Li+ in LiFePO4/C powder hydrochloride acid leaching solution by TBP exceeds 92%;Stripping rate of Li+ is around 93% after three-stage of stripping with 6 mol·L-1 hydrochloride acid as stripping agent,and the mass fraction of impurities such as Fe3+ in the organic phase is less than 1% after stripping.This method enables the separation rate of lithium from spent lithium iron phosphate battery to exceed 83%,achieving the regeneration of lithium resources in spent lithium iron phosphate batteries.
Key words:  spent lithium iron phosphate batteries    TBP    lithium metal    extraction
收稿日期:  2020-08-29      修回日期:  2021-05-16          
ZTFLH:  X5  
通讯作者:  郭玉文(1967-),男,博士,研究员,主要从事固体废物资源化研究,通讯联系人,guoyuwen@craes.org.cn。    E-mail:  guoyuwen@craes.org.cn
作者简介:  王艺博(1993-),女,硕士,工程师,主要从事固废资源化研究,17781480363@163.com
引用本文:    
王艺博, 阮久莉, 郭玉文, 姚扬, 李妍林. TBP为萃取剂分离废磷酸铁锂电池中金属锂的研究[J]. 现代化工, 2021, 41(7): 185-190.
WANG Yi-bo, RUAN Jiu-li, GUO Yu-wen, YAO Yang, LI Yan-lin. Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant. Modern Chemical Industry, 2021, 41(7): 185-190.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.07.038  或          https://www.xdhg.com.cn/CN/Y2021/V41/I7/185
[1] Tan R,Tangd,Lin B.Policy impact of new energy vehicles promotion on air quality in Chinese cities[J].Energy Policy,2018,118:33-40.
[2] Cai B F,Zhang L X.Urban CO2 emissions in China:Spatial boundary and performance comparison[J].Energy Policy,2014,66(Complete):557-567.
[3] 中华人民共和国中央人民政府网.国务院关于印发"十三五"国家战略性新兴产业发展规划的通知[EB/OL].[2016-11-29]http://www.gov.cn/
[4] 中华人民共和国科学技术部网.工业和信息化部国家发展改革委科技部关于印发《汽车产业中长期发展规划》的通知[EB/OL].[2017-4-6]http://www.most.gov.cn/
[5] 张淑英,李天钰.中国新能源汽车动力电池报废量预测与对策建议-基于蒙卡洛模拟的预测[J].环境与可持续发展,2019,44(6):101-105.
[6] 宋岷洧,阮久莉.基于不同模型的动力电池报废量预测比较[C].环境工程2019年全国学术年会论文集(下册),2019,37:728-731.
[7] 彭结林,朱华炳,何双华.基于Stanford模型的动力电池报废量估算研究[J].机械制造与自动化,2018,47(5):206-209.
[8] Chen X P,Kang D Z,Cao L,et al.Separation and recovery of valuable metals from spent lithium ion batteries:Simultaneous recovery of Li and Co in a single step[J].Separation and Purification Technology,2019,210:690-697.
[9] Zhang J J,Hu J T,Zhang W J,et al.Efficient and economical recovery of lithium,cobalt,nickel,manganese from cathode scrap of spent lithium-ion batteries[J].Journal of Cleaner Production,2018,204:437-446.
[10] Fan B,Chen X,Zhou T,et al.A sustainable process for the recovery of valuable metals from spent lithium-ion batteries[J].Waste Manag Res,2016,34(5):474-481.
[11] Huang T,Liu L F,Zhang S W.Recovery of cobalt,lithium,and manganese from the cathode active materials of spent lithium-ion batteries in a bio-electro-hydrometallurgical process[J].Hydrometallurgy,2019,188:101-111.
[12] Chen J,Li Q,Song J,et al.Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J].Green Chem,2016,8:C5GC02650D.
[13] Kim H S,Shin E J.ChemInform abstract:Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes[J].Cheminform,2013,34(3):851-855.
[14] Zhang J L,Hu J T,Liu Y B,et al.Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J].ACS Sustainable Chemistry & Engineering,2019.
[15] Wang X,Wang X Y,Zhang R,et al.Hydrothermal preparation and performance of LiFePO4,by using Li3PO4,recovered from spent cathode scraps as Li source[J].Waste Management,2018,78:208-216.
[16] Zheng G R J,Zhao L,Wang W H,et al.Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J].RSC Advances,2016,6(49):43613-43625.
[17] Song X,Hu T,Liang C,et al.Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J].RSC Adv,2017,7(8):4783-4790.
[18] Li X L,Zhang J,Song D W,et al.Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J].Journal of Power Sources,2017,345:78-84.
[19] Zhou Z Y,Qin W,Liang S K,et al.Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3[J].Industrial & Engineering Chemistry Research,2012,51(39):12926-12932.
[20] Wei X,Liang S K,Zhou Z Y,et al.Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J].Hydrometallurgy,2016,166:9-15.
[21] Gou Z M,Zhu S L.Extraction of lithium from brine containing high concentration of magnesium by tri-n-butyl phosphate dissolved in kerosene[J].Chinese Journal of Chemical Engineering,1998,6(2):124-129.
[22] Wei X,Liang S K,Zhou Z Y,et al.Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl3 in methyl isobutyl ketone[J].Hydrometallurgy,2017,171:27-32.
[23] 张燕辉,李丽娟,李晋峰,等.磷酸三丁酯从盐湖卤水中萃取锂的机理研究[J].无机盐工业,2012,44(3):12-15,24.
[24] Zhou Z Y,Qin W,Fei W Y,et al.A study on stoichiometry of complexes of tributyl phosphate and methyl isobutyl ketone with lithium in the presence of FeCl3[J].Chinese Journal of Chemical Engineering,2012,20(1):36-39.
[25] 石成龙,贾永忠,景燕.离子液体-磷酸三丁酯体系分离盐湖卤水镁锂[J].化工学报,2015,66(S1):253-259.
[26] Dong H S,Fan Z,Wang B,et al.Hydrate-based reduction of heavy metal ion from aqueous solution[J].Energy Procedia,2017,105:4706-4712.
[27] Song Y C,Dong H S,Yang L,et al.Hydrate-based heavy metal separation from aqueous solution[J].Scientific Reports,2016,6:21389.
[28] 杨丹,徐文艺.CuCl2-H2O体系和FeCl3-H2O体系络合物拉曼光谱研究与溶液拉曼定量分析探索[J].光谱学与光谱分析,2011,31(10):2742-2746.
[29] Zhou Z Y,Qin W,Chu Y F,et al.Elucidation of the structures of tributyl phosphate/Li complexes in the presence of FeCl3 via UV-visible,Raman and IR spectroscopy and the method of continuous variation[J].Chemical Engineering Science,2013,101(20):577-585.
[30] Saleemi A N,Rielly C D,Nagy Z K.Monitoring of the combined cooling and antisolvent crystallisation of mixtures of aminobenzoic acid isomers using ATR-UV/Vis spectroscopy and FBRM[J].Chemical Engineering Science,2012,77(none):122-129.
[1] 伍欢, 董社英, 郭靖珺. 磁性碳化氮复合材料用于水中苯基类有机农药的磁性固相萃取[J]. 现代化工, 2021, 41(4): 224-228,233.
[2] 刘燕泽华, 师维江, 湛含辉. 硫脲基咪唑离子液体的合成及其对Zn2+萃取机理的研究[J]. 现代化工, 2021, 41(2): 114-119.
[3] 毛倩, 于玉夺, 李敏, 葛文书, 贺高红, 张文君. 二(2-乙基己基)磷酸酯协同二苯并-18-冠醚-6高效分离浓盐水中钙镁离子乳化液膜的研究[J]. 现代化工, 2021, 41(2): 135-139,145.
[4] 余文卉, 王涛, 李谭香凝, 王雨婷, 胡兵. 新型磁性离子液体的萃取氧化脱硫研究[J]. 现代化工, 2021, 41(2): 188-192.
[5] 宝贵荣, 通拉嘎, 李优鑫, 包建民. HF-LPME与HPLC联用测定槲皮素LogD和富集倍数[J]. 现代化工, 2021, 41(2): 265-269.
[6] 王巍, 周国梁, 艾利君, 王强, 刘天坤, 蔡卫滨. 板波纹填料用于低界面张力萃取体系的操作特性研究[J]. 现代化工, 2020, 40(S1): 242-245.
[7] 沈洋. 隔壁萃取精馏分离醋酸乙烯-甲醇的计算机模拟与节能增效[J]. 现代化工, 2020, 40(S1): 250-253.
[8] 周俊伟, 张雷, 郭林樵. 双效萃取精馏工艺制备无水乙醇的模拟与优化[J]. 现代化工, 2020, 40(7): 221-225.
[9] 蔡琨, 沙鑫鑫, 刘小燕, 陆维青, 姜晟. 离子液体磁性石墨烯吸附环境水样中的氟喹诺酮类抗生素[J]. 现代化工, 2020, 40(6): 227-233.
[10] 冯超, 王瑜, 孔令镕, 岳昌盛, 王志乔, 姚德俊, 常腾腾. 超临界CO2萃取修复污染土壤的发展与展望[J]. 现代化工, 2020, 40(5): 23-27,31.
[11] 林祥钦, 王圆圆, 孙丹凤, 杨峰, 潘会会, 郭爱军. 混合碳四催化异构丁烯提浓工艺研究[J]. 现代化工, 2020, 40(5): 211-213.
[12] 张锐标, 朱志华. 新型萃取剂回收DMF的模拟研究及经济分析[J]. 现代化工, 2020, 40(4): 218-221.
[13] 李成帅, 姚媛媛, 刘博文, 张会敏. 低共熔溶剂在乙腈-水体系分离中的应用[J]. 现代化工, 2020, 40(3): 199-202,207.
[14] 吴格格, 高仕谦, 张占恩. 二元小分子醇/盐双水相体系萃取三唑类杀菌剂[J]. 现代化工, 2020, 40(2): 231-235.
[15] 李云, 张竞予, 陈金芳. 量子点废液轻组分的资源化利用[J]. 现代化工, 2020, 40(11): 182-185,189.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn