Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (7): 68-71    DOI: 10.16606/j.cnki.issn0253-4320.2021.07.014
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
人工湿地填料在废水中脱氮除磷的应用研究进展
尹楚杰, 吕源财, 潘文斌
福州大学环境与资源学院, 福建 福州 350108
Research progress on application of constructed wetland fillers in removing nitrogen and phosphorus from wastewater
YIN Chu-jie, LV Yuan-cai, PAN Wen-bin
College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
下载:  PDF (1323KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 首先对人工湿地相关概念及人工湿地植物、微生物、填料进行了阐述,着重介绍了多种人工湿地填料在除磷、除氮方面的净化效果,最后对人工湿地填料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹楚杰
吕源财
潘文斌
关键词:  人工湿地  水处理  填料  脱磷  除氮    
Abstract: Related concepts of constructed wetlands,as well as the plants,microorganisms and fillers of constructed wetland are explained.Purification effect of constructed wetland fillers to phosphorus and nitrogen is emphasized.Development prospect of constructed wetland in the future is expected.
Key words:  constructed wetland    water treatment    filler    phosphorus removal    nitrogen removal
收稿日期:  2020-07-27      修回日期:  2021-04-26          
ZTFLH:  TH3  
基金资助: 国家重点研发计划"典型脆弱生态修复与保护研究"专项项目(2016YFC0502900)
通讯作者:  潘文斌(1973-),男,博士,副教授,研究方向为区域与流域环境规划与管理,通讯联系人,1034441@qq.com。    E-mail:  1034441@qq.com
作者简介:  尹楚杰(1997-),男,硕士生
引用本文:    
尹楚杰, 吕源财, 潘文斌. 人工湿地填料在废水中脱氮除磷的应用研究进展[J]. 现代化工, 2021, 41(7): 68-71.
YIN Chu-jie, LV Yuan-cai, PAN Wen-bin. Research progress on application of constructed wetland fillers in removing nitrogen and phosphorus from wastewater. Modern Chemical Industry, 2021, 41(7): 68-71.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.07.014  或          https://www.xdhg.com.cn/CN/Y2021/V41/I7/68
[1] Nivala J,Abdallat G,Aubron T,et al.Vertical flow constructed wetlands for decentralized wastewater treatment in Jordan:Optimization of total nitrogen removal[J].Science of the Total Environment,2019,671:495-504.
[2] Mander V,Tooming A,Mauring T,et al.Performance dynamics of a LWA-filled hybrid constructed wetland in Estonia[J].Ecohydrology & Hydrobiology,2007,7(3):297-302.
[3] Ma N,Wang W,Gao J,et al.Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season[J].Ecological Engineering,2017,109:48-56.
[4] Du L,Chen Q,Liu P,et al.Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-flow Constructed Wetlands (IVCWs)[J].Bioresource Technology,2017,243:204-211.
[5] Zhang Y,Liu X,Fu C,et al.Effect of Fe2+ addition on chemical oxygen demand and nitrogen removal in horizontal subsurface flow constructed wetlands[J].Chemosphere,2019,220:259-265.
[6] Ji M,Hu Z,Hou C,et al.New insights for enhancing the performance of constructed wetlands at low temperatures[J].Bioresource Technology,2020,301:122722-122731.
[7] Haishu S,Shengjun X,Shanghua W,et al.Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands[J].Journal of Environmental Management,2019,246:157-163.
[8] Vohla C,Kõiv M,Bavor H J,et al.Filter materials for phosphorus removal from wastewater in treatment wetlands-A review[J].Ecological Engineering,2011,37(1):70-89.
[9] Liu T,Xu S,Lu S,et al.A review on removal of organophosphorus pesticides in constructed wetland:Performance,mechanism and influencing factors[J].Science of The Total Environment,2019,651:2247-2268.
[10] Lu S,Gao X,Wu P,et al.Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels[J].Journal of Cleaner Production,2019,208:649-655.
[11] Zhao Y J,Hui Z,Chao X,et al.Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater[J].Ecological Engineering,2011,37(10):1546-1554.
[12] Andreo-Martínez P,García-Martínez N,Quesada-Medina J,et al.Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland:A case study in the southeast of Spain[J].Bioresource Technology,2017,233:236-246.
[13] Ge Z,Wei D,Zhang J,et al.Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland:Three years of pilot study[J].Water Research,2019,148:153-161.
[14] 吴鹏,陆爽君,徐乐中,等.改性沸石湿地脱氮除磷效能及机制[J].环境科学,2017,38(2):580-588.
[15] Jiang C,Jia L,Zhang B,et al.Comparison of quartz sand,anthracite,shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution[J].Journal of Environmental Sciences,2014,26(2):466-477.
[16] Mateus D M R,Vaz M M N,Capela I,et al.Sugarcane as constructed wetland vegetation:Preliminary studies[J].Ecological Engineering,2014,62:175-178.
[17] Li Z,Jiang N,Wu F,et al.Experimental investigation of phosphorus adsorption capacity of the waterworks sludges from five cities in China[J].Ecological Engineering,2013,53:165-172.
[18] 冀泽华,冯冲凌,吴晓芙,等.人工湿地污水处理系统填料及其净化机理研究进展[J].生态学杂志,2016,35(8):2234-2243.
[19] Yang Y,Liu J,Zhang N,et al.Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal[J].Ecotoxicology and Environmental Safety,2019,170:446-452.
[20] Ayaz S,Akta,Fndk N,et al.Effect of recirculation on nitrogen removal in a hybrid constructed wetland system[J].Ecological Engineering,2012,40:1-5.
[21] Nandakumar S,Pipil H,Ray S,et al.Removal of phosphorous and nitrogen from wastewater in Brachiaria-based constructed wetland[J].Chemosphere,2019,233:216-222.
[22] Feng L,Liu Y,Zhang J,et al.Dynamic variation in nitrogen removal of constructed wetlands modified by biochar for treating secondary livestock effluent under varying oxygen supplying conditions[J].Journal of Environmental Management,2020,260:110152.
[23] Zhou X,Liang C,Jia L,et al.An innovative biochar-amended substrate vertical flow constructed wetland for low C/N wastewater treatment:Impact of influent strengths[J].Bioresource Technology,2018,247:844-850.
[24] Martín M,Gargallo S,Hernández-Crespo C,et al.Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland[J].Ecological Engineering,2013,61:34-42.
[25] 马超.人工湿地填料基质筛选[D].天津:天津大学,2012.
[26] Guozhen Z,Kai M,Zixian Z,et al.Waste brick as constructed wetland fillers to treat the tail water of sewage treatment plant[J].Bulletin of Environmental Contamination and Toxicology,2020,104(2):273-281.
[27] 赵林丽,邵学新,吴明,等.人工湿地不同基质和粒径对污水净化效果的比较[J].环境科学,2018,39(9):4236-4241.
[28] Zhao D,Zhang M,Liu Z,et al.Can cold-season macrophytes at the senescence stage improve nitrogen removal in integrated constructed wetland systems treating low carbon/nitrogen effluent?[J].Bioresource Technology,2018,265:380-386.
[29] Zhang X,Hu Z,Ngo H H,et al.Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland[J].Water Research,2018,130:79-87.
[30] Tong X,Wang X,He X,et al.Effects of ofloxacin on nitrogen removal and microbial community structure in constructed wetland[J].Science of The Total Environment,2019,656:503-511.
[1] 徐文媛, 李素颖, 汪焱, 程永兵, 沈蒙莎, 彭家喜, 陈曦. 微污染水源水处理技术研究进展[J]. 现代化工, 2021, 41(7): 51-55.
[2] 宋文彦, 左华江, 唐春怡, 徐然. 壳聚糖纳滤膜的制备及在水处理中的应用[J]. 现代化工, 2021, 41(5): 64-67,72.
[3] 徐灿, 赵燕燕, 邱心宇, 高原. 填料组成及微观结构对胰高血糖素样肽-1的分离效果研究[J]. 现代化工, 2021, 41(5): 120-124.
[4] 张艳芬, 张巧玲, 焦纬洲, 郭婧, 刘有智. 撞击流-旋转填料床一步法制备氮掺杂二氧化钛的研究[J]. 现代化工, 2021, 41(4): 103-106,111.
[5] 何旺, 栗秀萍, 刘有智, 于洋. 撞击流-旋转填料床(IS-RPB)制备纳米硫化亚铁的研究[J]. 现代化工, 2021, 41(4): 167-171.
[6] 吕志超, 宋秀兰, 席玉鹤, 苏小莉, 董文艺, 孙飞云. 可调容积型多级AO工艺模拟仿真系统的构建及其稳定调控研究[J]. 现代化工, 2021, 41(4): 194-199.
[7] 王义安, 王超, 林华, 张学洪, Kong CHHUON. 人工湿地与微生物燃料电池耦合系统的研究进展[J]. 现代化工, 2021, 41(3): 21-25.
[8] 李维斌, 沈鑫, 胡瑞, 董颉, 李潜. 膜蒸馏在废水处理中的应用及膜污染控制进展[J]. 现代化工, 2021, 41(1): 19-23.
[9] 陈红芳, 王广智, 周思敏, 冯丽娜, 王东东, 胡磊. 改性沸石在污水处理工艺中的应用进展[J]. 现代化工, 2020, 40(S1): 59-63,70.
[10] 李玉娥, 王瑞波, 郭清霞, 徐晓军. PMS氧化-电絮凝处理含锰、锌、铁实际废水[J]. 现代化工, 2020, 40(S1): 216-219.
[11] 王巍, 周国梁, 艾利君, 王强, 刘天坤, 蔡卫滨. 板波纹填料用于低界面张力萃取体系的操作特性研究[J]. 现代化工, 2020, 40(S1): 242-245.
[12] 刘远峰, 张秀玲, 李从举. 微生物燃料电池技术及其应用研究进展[J]. 现代化工, 2020, 40(9): 20-24,29.
[13] 张春阳, 袁志国, 段稀凡, 段姗姗, 刘有智. 逆流旋转填料床吸收异丙醇气体的传质性能研究[J]. 现代化工, 2020, 40(9): 80-84.
[14] 王洋洋, 赵金辉, 顾佳华, 蒋浩然, 王臻, 赵涵. 植物对人工湿地-微生物燃料电池耦合系统去污及产电性能的影响[J]. 现代化工, 2020, 40(4): 65-68.
[15] 刘治界, 杨春鹏, 秦冰. 催化臭氧氧化与陶瓷膜耦合处理污水研究进展[J]. 现代化工, 2020, 40(4): 69-72.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn