Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (6): 27-31    DOI: 10.16606/j.cnki.issn0253-4320.2021.06.006
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
铁酸钴材料的制备及其在环境领域中的应用研究进展
李英豪1,2,3, 陆继长1,2,3, 朱松山1,2,3, 张迎1,2,3, 罗永明1,2,3
1. 昆明理工大学环境科学与工程学院, 云南 昆明 650500;
2. 昆明理工大学挥发性有机物污染防治与资源化省创新团队, 云南 昆明 650500;
3. 云南省高校恶臭挥发性有机物控制重点实验室, 云南 昆明 650500
Progress in preparation of cobalt ferrite materials and applications in environment field
LI Ying-hao1,2,3, LU Ji-chang1,2,3, ZHU Song-shan1,2,3, ZHANG Ying1,2,3, LUO Yong-ming1,2,3
1. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
2. Yunnan Provincial Innovation Team for Pollution Control and Reutilization of Volatile Organic Compounds, Kunming 650500, China;
3. The Higher Educational Key Laboratory for Controlling Odorous Volatile Organic Compounds of Yunnan Province, Kunming 650500, China
下载:  PDF (1334KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 首先对铁酸钴材料的制备方法及复合材料的制备进行了综述,并对比分析了不同制备方法的优缺点;其次,归纳总结了铁酸钴材料在催化、吸附、电化学领域的应用;最后,针对当前研究存在的问题进行了总结,并对未来研究方向提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李英豪
陆继长
朱松山
张迎
罗永明
关键词:  铁酸钴  制备  复合材料  催化  吸附    
Abstract: The preparation methods of cobalt ferrite and its composite materials are summarized,and the advantages and disadvantages of different preparation methods are compared and analyzed.Moreover,the applications of cobalt ferrite materials in the fields of catalysis,adsorption and electrochemistry are further discussed.Existing problems of current research are analyzed,and future research directions are prospected.
Key words:  cobalt ferrite    preparation    composite    catalysis    adsorption
收稿日期:  2021-02-25      修回日期:  2021-03-31          
ZTFLH:  TQ138.11  
  X505  
基金资助: 国家自然科学基金项目(42030712,21667016,21966018);云南省教育厅科学研究基金项目(2020J0060)
通讯作者:  陆继长(1990-),男,博士,讲师,研究方向为污水处理,通讯联系人,lujichangc7@kust.edu.cn。    E-mail:  lujichangc7@kust.edu.cn
作者简介:  李英豪(1997-),男,硕士生
引用本文:    
李英豪, 陆继长, 朱松山, 张迎, 罗永明. 铁酸钴材料的制备及其在环境领域中的应用研究进展[J]. 现代化工, 2021, 41(6): 27-31.
LI Ying-hao, LU Ji-chang, ZHU Song-shan, ZHANG Ying, LUO Yong-ming. Progress in preparation of cobalt ferrite materials and applications in environment field. Modern Chemical Industry, 2021, 41(6): 27-31.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.06.006  或          https://www.xdhg.com.cn/CN/Y2021/V41/I6/27
[1] Ojha V H,Kant K M.Investigation of structural and magnetic properties of strained CoFe2O4 nanoparticles[J].Journal of Physics and Chemistry of Solids,2021,148:109655.
[2] Da Silva F H M.Structural study,cationic distribution and oxidation state in magnetic score-shell nanoparticules based on ferrites[D].Université Pierre et Marie Curie-Paris Ⅵ,Universidade de Brasília,2016.
[3] Labchir N,Hannour A,Vincent D,et al.Microwave response of coplanar waveguide based on electrodeposited CoFe2O4 nanowires[J].Journal of Magnetism and Magnetic Materials,2020,510:166952.
[4] Wang L,Yang C,Zhang L,et al.The exchange coupling interaction in CoFe2O4/Fe3O4 hard and soft magnetic nanocomposites[J].Vacuum,2020,181:109751.
[5] Zhang X,Kan X,Wang M,et al.Mechanism of enhanced magnetization in CoFe2O4/La0.7Sr0.3MnO3 composites with different mass ratios[J].Ceramics International,2020,46(10):14847-14856.
[6] Hammiche-Bellal Y,Benadda A,Meddour-Boukhobza L,et al.Preparation and catalytic activity in ethanol combustion reaction of cobalt-iron spinel catalysts[J].Catalysis Communications,2013,42:62-67.
[7] Hammiche-Bellal Y,Djadoun A,Meddour-Boukhobza L,et al.Effect of the preparation method on the structural and catalytic properties of spinel cobalt-iron oxide[J].Materials Chemistry and Physics,2016,177:384-397.
[8] 程振宇,代建清,王志翔,等.共沉淀法制备CoFe2O4纳米颗粒及其磁电性能表征[J].功能材料,2017,48(8):8102-8106,8112.
[9] Duan Z,Zhao Y,Ren Y,et al.Facile micro-patterning of ferromagnetic CoFe2O4 films using a combined approach of sol-gel method and UV irradiation[J].Ceramics International,2019,45(1):369-377.
[10] Venturini J,Zampiva R Y S,Arcaro S,et al.Sol-gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels:Influence of additives on their stoichiometry and magnetic properties[J].Ceramics International,2018,44(11):12381-12388.
[11] Bennet J,Tholkappiyan R,Vishista K,et al.Attestation in self-propagating combustion approach of spinel AFe2O4 (A=Co,Mg and Mn) complexes bearing mixed oxidation states:Magnetostructural properties[J].Applied Surface Science,2016,383:113-125.
[12] Naik M M,Naik H S B,Kottam N,et al.Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles[J].Journal of Sol-Gel Science and Technology,2019,91(3):578-595.
[13] Mariosi F R,Venturini J,da Cas Viegas A,et al.Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications[J].Ceramics International,2020,46(3):2772-2779.
[14] Gan L,Zhong Q,Geng A,et al.Cellulose derived carbon nanofiber:A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation[J].Science of the Total Environment,2019,694:133705.
[15] Li X,Liu Z,Zhu Y,et al.Facile synthesis and synergistic mechanism of CoFe2O4@three-dimensional graphene aerogels towards peroxymonosulfate activation for highly efficient degradation of recalcitrant organic pollutants[J].Science of the Total Environment,2020,749:141466.
[16] Ehsan M F,Fazal A,Hamid S,et al.CoFe2O4 decorated g-C3N4 nanosheets:New insights into superoxide anion mediated photomineralization of methylene blue[J].Journal of Environmental Chemical Engineering,2020,8(6):104556.
[17] Hu Z,Ge M,Guo C.Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst[J].Chemosphere,2020,268:128834.
[18] Emadian S S,Ghorbani M,Bakeri G.Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation[J].Synthetic Metals,2020,267:116470.
[19] Alqassem B,Othman I,Haija M A,et al.Comparative catalytic activity of pure,mixed and P-modified CoFe2O4 nanoparticles for water treatment at neutral pH[J].Catalysis Communications,2020,150:106267.
[20] Renukadevi S,Jeyakumari A P.A one-pot microwave irradiation route to synthesis of CoFe2O4-g-C3N4 heterojunction catalysts for high visible light photocatalytic activity:Exploration of efficiency and stability[J].Diamond and Related Materials,2020,109:108012.
[21] Tan Y,Li C,Sun Z,et al.Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate[J].Chemical Engineering Journal,2020,388:124386.
[22] Liang Y D,He Y J,Wang T T,et al.Adsorptive removal of gentian violet from aqueous solution using CoFe2O4/activated carbon magnetic composite[J].Journal of Water Process Engineering,2019,27:77-88.
[23] De Oliveira H A L,Campos A F C,Gomide G,et al.Elaboration of a core@shell bimagnetic nanoadsorbent (CoFe2O4@γ-Fe2O3) for the removal of As(Ⅴ) from water[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,600:125002.
[24] Cruz D R S,Santos B T J,Cunha G C,et al.Green synthesis of a magnetic hybrid adsorbent (CoFe2O4/NOM):Removal of chromium from industrial effluent and evaluation of the catalytic potential of recovered chromium ions[J].Journal of Hazardous Materials,2017,334:76-85.
[25] Chang S,Zhang Q,Lu Y,et al.High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents:Experimental and molecular dynamics simulation study[J].Separation and Purification Technology,2020,238:116400.
[26] Cai K,Shen W,Ren B,et al.A phytic acid modified CoFe2O4 magnetic adsorbent with controllable morphology,excellent selective adsorption for dyes and ultra-strong adsorption ability for metal ions[J].Chemical Engineering Journal,2017,330:936-946.
[27] Olusegun S J,Mohallem N D S.Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles[J].Environmental Pollution,2020,260:114019.
[28] Long Y,Nie J,Yuan C,et al.Preparation of CoFe2O4/MWNTs/sponge electrode to enhance dielectric barrier plasma discharge for degradation of phenylic pollutants and Cr(Ⅵ) reduction[J].Applied Catalysis B:Environmental,2021,283:119604.
[29] Singh R N,Singh N K,Singh J P,et al.Effect of partial substitution of Cr on electrocatalytic properties of CoFe2O4 towards O2-evolution in alkaline medium[J].International Journal of Hydrogen Energy,2006,31(6):701-707.
[1] 林代峰, 张臻, 罗永晋, 钱庆荣, 陈庆华. 二氧化碳加氢制甲醇催化剂研究进展[J]. 现代化工, 2021, 41(6): 11-16.
[2] 崔涵, 罗通, 吕高金, 蒋水星, 李昌涛, 寇光智, 杨桂花. 木质素/天然多糖复合材料的应用研究进展[J]. 现代化工, 2021, 41(5): 35-39.
[3] 戴豪波, 杜凯敏, 郑渭建, 刘春红, 胡晨晖, 卓佐西, 蒋楠. NH3-SCR脱硝催化剂研究进展[J]. 现代化工, 2021, 41(5): 40-44,48.
[4] 赵中昆, 许志志, 陈鑫. 单原子催化剂在电催化还原领域的研究进展[J]. 现代化工, 2021, 41(5): 45-48.
[5] 张媛媛, 冯勇超, 于庆君, 韩佳慧. 餐饮油烟污染物净化技术对比及前景分析[J]. 现代化工, 2021, 41(5): 49-53,58.
[6] 李梦翔, 周月, 刘明庆, 范梦婕, 陈英文. 沸石分子筛材料去除CVOCs的研究进展[J]. 现代化工, 2021, 41(5): 59-63.
[7] 宋文彦, 左华江, 唐春怡, 徐然. 壳聚糖纳滤膜的制备及在水处理中的应用[J]. 现代化工, 2021, 41(5): 64-67,72.
[8] 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82,87.
[9] 王竹青, 曾晨, 袁东, 覃杰, 陈琦. CoNiFe三元类水滑石的制备及吸附性能研究[J]. 现代化工, 2021, 41(5): 93-97,102.
[10] 吴芹, 石泉, 宋淑芬, 黎汉生, 史大昕, 赵芸, 矫庆泽. 磺酸树脂催化合成对叔丁基苯甲酸甲酯的研究[J]. 现代化工, 2021, 41(5): 98-102.
[11] 何玲, 孙福海, 徐琪鹏. 电沉积法从废弃FCC催化剂中回收稀土元素的研究[J]. 现代化工, 2021, 41(5): 108-113.
[12] 江悦, 尚宏周, 王皓卿, 袁飞, 韩利华, 孙晓然. 铅离子印迹聚合物的制备及吸附性能研究[J]. 现代化工, 2021, 41(5): 143-147,152.
[13] 刘建武, 严生虎, 张跃. 微波促进卤素交换氟化反应合成邻氟苯腈的研究[J]. 现代化工, 2021, 41(5): 148-152.
[14] 王玉春, 刘赵荣, 谭超, 孙鸿, 李忠, 薛雨佳. 铜源阴离子对CuY催化剂性能的影响[J]. 现代化工, 2021, 41(5): 163-167.
[15] 汪山, 李倩, 顾文秀, 宋启军, 滕跃, 邹路易. 单宁酸/BiOCl的制备及其可见光催化性能研究[J]. 现代化工, 2021, 41(5): 168-173.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn