Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (6): 11-16    DOI: 10.16606/j.cnki.issn0253-4320.2021.06.003
  专题:碳中和 本期目录 | 过刊浏览 | 高级检索 |
二氧化碳加氢制甲醇催化剂研究进展
林代峰, 张臻, 罗永晋, 钱庆荣, 陈庆华
福建师范大学环境科学与工程学院, 福建 福州 350007
Research advances on catalysts for hydrogenation of carbon dioxide to methanol
LIN Dai-feng, ZHANG Zhen, LUO Yong-jin, QIAN Qing-rong, CHEN Qing-hua
College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
下载:  PDF (2102KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 详细阐述了Cu基催化剂的研究进展,重点从催化剂的反应机理、构效关系和活性位点进行了讨论。此外还概述了贵金属催化剂、In2O3基催化剂和其他新型催化剂的最新进展,以增强当前对CO2加氢制甲醇的理解。最后,对现有催化剂存在的问题进行了分析,并提出了今后可能的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林代峰
张臻
罗永晋
钱庆荣
陈庆华
关键词:  二氧化碳加氢  甲醇  催化剂  反应机理  构效关系    
Abstract: In this review,the research progress on Cu-based catalysts is described in detail,focusing on the reaction mechanism,structure-activity relationship and active site of the catalysts.Furthermore,latest research advances on noble metal catalysts,In2O3-based catalysts and other novel catalysts are summarized to enhance current understanding to the hydrogenation of carbon dioxide to methanol.Finally,the problems for the existing catalysts are analyzed,and the possible research directions in the future are proposed.
Key words:  hydrogenation of carbon dioxide    methanol    catalysts    reaction mechanism    structure-activity relationship
收稿日期:  2021-04-07      修回日期:  2021-05-14          
ZTFLH:  X701  
基金资助: 国家重点研究计划"固废资源化"重点专项(2019YFC1904500);国家自然科学基金项目(21875037)
通讯作者:  罗永晋(1986-),男,博士,教授,研究方向为大气污染控制,通讯联系人,yongjinluo@fjnu.edu.cn。    E-mail:  yongjinluo@fjnu.edu.cn
作者简介:  林代峰(1994-),男,博士生,研究方向为大气污染控制,lin13074803790@163.com
引用本文:    
林代峰, 张臻, 罗永晋, 钱庆荣, 陈庆华. 二氧化碳加氢制甲醇催化剂研究进展[J]. 现代化工, 2021, 41(6): 11-16.
LIN Dai-feng, ZHANG Zhen, LUO Yong-jin, QIAN Qing-rong, CHEN Qing-hua. Research advances on catalysts for hydrogenation of carbon dioxide to methanol. Modern Chemical Industry, 2021, 41(6): 11-16.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.06.003  或          https://www.xdhg.com.cn/CN/Y2021/V41/I6/11
[1] Chen K,Fang H,Wu S,et al.CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15:The crucial role of Cu-LaO<em>x interfaces[J].Applied Catalysis B:Environmental,2019,251:119-129.
[2] Lam E,Larmier K,Wolf P,et al.Isolated Zr surface sites on silicapromote hydrogenation of CO2 to CH3OH in supported Cu Catalysts[J].Journal of the American Chemical Society,2018,140:10530-10535.
[3] Bavykina A,Yarulina I,Abdulghani A J,et al.Turning a methanation Co catalyst into an In-Co methanol producer[J].ACS Catalysis,2019,9(8):6910-6918.
[4] Dostagir N H M D,Thompson C,Kobayashi H,et al.Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol[J].Catalysis Science & Technology,2020,10:8196-8202.
[5] Olah G A.Beyond oil and gas:The methanol economy[J].AngewandteChemie International Edition,2005,44(18):2636-2639.
[6] Yu J,Yang M,Zhang J,et al.Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol[J].ACS Catalysis,2020,10:14694-14706.
[7] Wang Y,Kattel S,Gao W,et al.Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol[J].Nature Communications,2019,10:1-10.
[8] Kattel S,Yan B,Yang Y,et al.Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J].Journal of the American Chemical Society,2016,138:12440-12450.
[9] Natesakhawat S,Lekse J W,Baltrus J P,et al.Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol[J].ACS Catalysis,2012,2(8):1667-1676.
[10] Kattel S,Ramírez P J,Chen J G,et al.Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J].Science,2017,355:1296-1299.
[11] Sun Y,Huang C,Chen L,et al.Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions[J].Journal of CO2 Utilization,2020,37:55-64.
[12] Ouyang B,Tan W,Liu B,Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J].Catalysis Communications,2017,95:36-39.
[13] Tada S,Kayamori S,Honma T,et al.Design of interfacial sites between cu and amorphous ZrO2 dedicated to CO2-to-methanol hydrogenation[J].ACS Catalysis,2018,8(9):7809-7819.
[14] Tada S,Oshima K,Noda Y,et al.Effects of cu precursor types on the catalytic activity of Cu/ZrO2 toward methanol synthesis via CO2 hydrogenation[J].Industrial & Engineering Chemistry Research,2019,58(42):19434-19445.
[15] Chen K,Yu J,Liu B,et al.Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J].Journal of Catalysis,2019,372:163-173.
[16] Huang C,Wen J,Sun Y,et al.CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst:Effects of reducing gas induced Cu nanoparticle morphology[J].Chemical Engineering Journal,2019,374:221-230.
[17] Bahruji H,Bowker M,Hutchings G,et al.Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J].Journal of Catalysis,2016,343:133-146.
[18] Jiang F,Wang S,Liu B,et al.Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J].ACS Catalysis,2020,10(19):11493-11509.
[19] Gutterød E S,Lazzarini A,Fjermestad T,et al.Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67:deciphering the role of the metal-organic framework[J].Journal of the American Chemical Society,2020,142(2):999-1099.
[20] Abdel-Mageed A M,Klyushin A,Rezvani A,et al.Negative charging of Au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst:insights from operando IR and near-ambient-pressure XPS and XAS measurements[J].AngewandteChemie International Edition,2019,58(30):10325-10329.
[21] Ye J,Liu C,Mei D,et al.Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110):A DFT study[J].ACS Catalysis,2013,3(6):1296-1306.
[22] Dang S,Qin B,Yang Y,et al.Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J].Science Advances,2020,6(25):1-11.
[23] Yang C,Pei C,Luo R,et al.Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol[J].Journal of the American Chemical Society,2020,142(46):19523-19531.
[24] Tsoukalou A,Abdala P M,Armutlulu A,et al.Operando X-ray absorption spectroscopy identifies a monoclinic ZrO2:in solid solution as the Active phase for the hydrogenation of CO2 to methanol[J].ACS Catalysis,2020,10(17):10060-10067.
[25] Jia X,Sun K,Wang J,et al.Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J].Journal of Energy Chemistry,2020,50:409-415.
[26] Wang J,Li G,Li Z,et al.A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J].Science Advances,2017,3(10):1-10.
[27] Xu D,Hong X,Liu G.Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol:Insight into hydrogen spillover[J].Journal of Catalysis,2021,393:207-214.
[28] Studt F,Sharafutdinov I,Abild-Pedersen F,et al.Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J].Nature Chemistry,2014,6(4):320-324.
[29] Gallo A,Snider J L,Sokaras D,et al.Ni5Ga3 catalysts for CO2 reduction to methanol:Exploring the role of Ga surface oxidation/reduction on catalytic activity[J].Applied Catalysis B:Environmental,2020,267:118369.
[30] Wang L,Guan E,Wang Y,et al.Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts[J].Nature Communications,2020,11(1):1-9.
[1] 戴豪波, 杜凯敏, 郑渭建, 刘春红, 胡晨晖, 卓佐西, 蒋楠. NH3-SCR脱硝催化剂研究进展[J]. 现代化工, 2021, 41(5): 40-44,48.
[2] 赵中昆, 许志志, 陈鑫. 单原子催化剂在电催化还原领域的研究进展[J]. 现代化工, 2021, 41(5): 45-48.
[3] 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82,87.
[4] 吴芹, 石泉, 宋淑芬, 黎汉生, 史大昕, 赵芸, 矫庆泽. 磺酸树脂催化合成对叔丁基苯甲酸甲酯的研究[J]. 现代化工, 2021, 41(5): 98-102.
[5] 何玲, 孙福海, 徐琪鹏. 电沉积法从废弃FCC催化剂中回收稀土元素的研究[J]. 现代化工, 2021, 41(5): 108-113.
[6] 徐灿, 赵燕燕, 邱心宇, 高原. 填料组成及微观结构对胰高血糖素样肽-1的分离效果研究[J]. 现代化工, 2021, 41(5): 120-124.
[7] 刘建武, 严生虎, 张跃. 微波促进卤素交换氟化反应合成邻氟苯腈的研究[J]. 现代化工, 2021, 41(5): 148-152.
[8] 王玉春, 刘赵荣, 谭超, 孙鸿, 李忠, 薛雨佳. 铜源阴离子对CuY催化剂性能的影响[J]. 现代化工, 2021, 41(5): 163-167.
[9] 卢德庆, 辛靖, 朱元宝, 任绪金, 苏梦军. 催化裂化装置掺炼废甲醇的可行性探索[J]. 现代化工, 2021, 41(5): 212-216.
[10] 苏暐光, 孔磊. Cu基催化剂上二氧化碳加氢合成甲醇的研究进展[J]. 现代化工, 2021, 41(4): 26-29.
[11] 于祺, 李瑞峰, 田宏宇, 吴显军. 浆态床渣油加氢油溶性催化剂研究进展[J]. 现代化工, 2021, 41(4): 34-37.
[12] 赵文祥, 杨双霞, 陈雷, 孙来芝, 谢新苹, 伊晓路, 司洪宇, 于萌萌, 华栋梁. 生物质热化学催化转化制富氢合成气研究进展[J]. 现代化工, 2021, 41(4): 38-42.
[13] 张甄, 秦绍东, 何若南, 李加波, 邢爱华. 合成气直接制备低碳烯烃催化剂研究进展[J]. 现代化工, 2021, 41(4): 58-62.
[14] 张鹏, 贾媛媛, 唐中华, 刘兴誉, 刘军强, 刘光利, 巫树锋. 钒钛系脱硝催化剂抗SO2和H2O中毒性能研究进展[J]. 现代化工, 2021, 41(4): 67-71.
[15] 魏威, 谷晓凤, 朱瑛, 粟智, 汪鑫, 冶育芳. 超声空化场强化甲苯烷基化反应生成乙苯的研究[J]. 现代化工, 2021, 41(4): 112-116,121.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn