Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (5): 40-44,48    DOI: 10.16606/j.cnki.issn0253-4320.2021.05.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
NH3-SCR脱硝催化剂研究进展
戴豪波1, 杜凯敏2,3, 郑渭建2,3, 刘春红2,3, 胡晨晖2,3, 卓佐西2,3, 蒋楠1
1. 浙江天地环保科技股份有限公司, 浙江 杭州 311121;
2. 浙江省火力发电高效节能与污染物控制技术研究重点实验室, 浙江 杭州 311121;
3. 浙江浙能技术研究院有限公司, 浙江 杭州 311121
Research progress on NH3-SCR catalysts
DAI hao-bo1, DU Kai-min2,3, ZHENG Wei-jian2,3, LIU Chun-hong2,3, HU Chen-hui2,3, ZHUO Zuo-xi2,3, JIANG Nan1
1. Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou 311121, China;
2. Zhejiang Provincial Key Laboratory of Energy Conservation&Pollutant Control Technology for Thermal Power, Hangzhou 311121, China;
3. Zhejiang Energy Group R&D Institute Co., Ltd., Hangzhou 311121, China
下载:  PDF (1552KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了NH3-SCR脱硝催化反应机理及近年来文献报道的脱硝催化剂体系(V、Mn、Ce基等过渡金属氧化物和复合氧化物催化剂,Fe、Cu离子交换型分子筛催化剂),并对各种催化剂的优势和不足进行分析评述。虽然目前催化剂体系众多,但催化剂宽裕的高活性操作温窗、高温水热稳定性和耐毒性仍有待提高。最后指出,开发新型催化剂、改善催化剂的高温水热稳定性、提升抗中毒能力和绿色合成是未来NH3-SCR脱硝催化剂研究的重要方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴豪波
杜凯敏
郑渭建
刘春红
胡晨晖
卓佐西
蒋楠
关键词:  氮氧化物  氨气  选择催化还原  催化剂  活性  稳定性    
Abstract: The reaction mechanism of NH3-SCR is reviewed,and the recently reported catalyst systems are introduced,such as V-,Mn-,Ce-based transition metal oxide or composite oxide catalysts,Fe-zeolite catalysts and Cu-zeolite catalysts.The advantages and drawbacks of various kinds of catalysts are analyzed.Although there are many kinds of catalyst systems developed for NH3-SCR,some performances of the catalysts like wide operating temperature window,great hydrothermal stability and outstanding resistance to poisoning need to be improved.In the future,it is suggested for NH3-SCR to develop new types of catalysts,improve hydrothermal stability of the catalysts at high temperature,enhance catalysts' resistance to poisoning and develop "green" synthesis process.
Key words:  NOx    NH3    SCR    catalyst    activity    stability
收稿日期:  2020-06-09      修回日期:  2021-03-12           出版日期:  2021-05-20
ZTFLH:  O643.3  
基金资助: 浙江省能源集团科技项目(ZNKJ-2018-114)
通讯作者:  刘春红(1965-),女,硕士,教授级高级工程师,研究方向为化工与环保新材料研究,通讯联系人,lch3333@sina.com。    E-mail:  lch3333@sina.com
作者简介:  戴豪波(1972-),男,硕士,高级工程师,研究方向为能源环保,daihaobo@126.com
引用本文:    
戴豪波, 杜凯敏, 郑渭建, 刘春红, 胡晨晖, 卓佐西, 蒋楠. NH3-SCR脱硝催化剂研究进展[J]. 现代化工, 2021, 41(5): 40-44,48.
DAI hao-bo, DU Kai-min, ZHENG Wei-jian, LIU Chun-hong, HU Chen-hui, ZHUO Zuo-xi, JIANG Nan. Research progress on NH3-SCR catalysts. Modern Chemical Industry, 2021, 41(5): 40-44,48.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.05.009  或          https://www.xdhg.com.cn/CN/Y2021/V41/I5/40
[1] 中华人民共和国环境保护部.中国移动源环境管理年报(2019)[R].2019.
[2] Paolucci C,Khurana I,Parekh A A,et al.Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction[J].Science,2017,357(6354):898-903.
[3] Jones S,Ji Y,Bueno-lopez A,et al.CeO2-M2O3 passive NOx adsorbers for cold start applications[J].Emission Control Science and Technology,2017,3(1):59-72.
[4] Han L P,Cai S X,Gao M,et al.Selective catalytic reduction of NOx with NH3 by using novel catalysts:State of the art and future prospects[J].Chemical Reviews,2019,119(19):10916-10976.
[5] Gao F Y,Tang X L,Yi H H,et al.A review on selective catalytic reduction of NOx by NH3 over Mn-based catalysts at low temperatures:Catalysts,mechanisms,kinetics and DFT calculations[J].Catalysts,2017,7(7):199-230.
[6] 赵乐乐,王守信,王远洋.V2O5-WO3/TiO2催化剂的制备及其烟气脱硝性能[J].工业催化,2015,23(11):874-881.
[7] Liu Z M,Zhang S X,Li J H,et al.Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3[J].Applied Catalysis B:Environmental,2014,158/159:11-19.
[8] Xin Y,Li H,Zhang N N,et al.Molecular-level insight into selective catalytic reduction of NOx with NH3 to N2 over a highly efficient bifunctional Va-MnOx catalyst at Low Temperature[J].ACS Catalysis,2018,8(6):4937-4949.
[9] Huang J,Huang H,Jiang H T,et al.The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3-SCR of NOx[J].Catalysis Today,2019,332:49-58.
[10] Ma Z X,Sheng L P,Wang X W,et al.Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temprature[J].Advanced Materials,2019,31(42):1903719.
[11] Song Z X,Wang J K,Zhang Q L,et al.Comparison of sulfuric acid- or phosphoric acid-modified CeO2 and the influence of surface acidity and redox property on its activity toward NH3-SCR[J].Research on Chemical Intermediates,2019,45:645-661.
[12] Peng Y,Li K Z,Li J H.Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3:An in situ IR and raman spectroscopy study[J].Applied Catalysis B:Environmental,2013,140/141:483-492.
[13] Yu T,Fan D Q,Hao T,et al.The effect of various templates on the NH3-SCR activities over Cu/SAPO-34 catalysts[J].Chemical Engineering Journal,2014,243:159-168.
[14] Kwak J H,Tonkyn R G,Kim D H,et al.Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J].Journal of Catalysis,2010,275(2):187-190.
[15] Zhang T,Qiu F,Li J H.Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NOx with NH3:Enhancement of activity,hydrothermal stability and propene poisoning resistance[J].Applied Catalysis B:Environmental,2016,195:48-58.
[16] Zhao Z C,Yu R,Shi C,et al.Rare-earth ion exchanged Cu-SSZ-13 zeolite fromorganotemplate-free synthesis with enhancedhydrothermal stability in NH3-SCR of NO[J].Catalysis Science & Technology,2019,9:241-251.
[17] He C H,Wang Y H,Cheng Y S,et al.Activity,stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia[J].Applied Catalysis A:General,2009,368(1/2):121-126.
[18] Wang A Y,Wang Y L,Walter E D,et al.NH3-SCR on Cu,Fe and Cu+Fe exchanged beta and SSZ-13 catalysts:Hydrothermal aging and propylene poisoning effects[J].Catalysis Today,2019,320:91-99.
[19] Liu J X,Du Y H,Liu J,et al.Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3[J].Applied Catalysis B:Environmental,2017,203:704-714.
[20] Wang C Z,Yang S J,Chang H Z,et al.Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2:Acidity,surface species and catalytic activity[J].Chemical Engineering Journal,2013,(225):520-527.
[21] Gong P J,Xie J L,Fang D,et al.Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J].Chinese Journal of Catalysis,2017,38(11):1925-1934.
[22] Yao X J,Chen L,Cao J,et al.Morphology and crystal-plane effects of CeO2 on TiO2/CeO2 catalysts during NH3-SCR reaction[J].Industrial & Engineering Chemistry Research,2018,57(37):12407-12419.
[23] Panahi P N.Comparative study of ZSM-5 supported transition metal (Cu,Mn,Co,and Fe) nanocatalysts in the selective catalytic reduction of NO with NH3[J].Environmental Progress & Sustainable Energy,2017,36(4):1049-1055.
[24] Sjövall H,Olsson L,Fridell E,et al.Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5-The effect of changing the gas composition[J].Applied Catalysis B:Environmental,2006,64(3/4):180-188.
[25] Corma A,Palomares A,Marquez F.Determining the nature of the active sites of Cu-beta zeolites for the selective catalytic reduction (SCR) of NOx by using a coupled reaction-XAES/XPS study[J].Journal of Catalysis,1997,170(1):132-139.
[26] Ren L M,Zhu L F,Yang C G,et al.Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J].Chemical Communications,2011,47(35):9789-9791.
[27] Qi G S,Wang Y H,Yang R T.Selective catalytic reduction of nitric oxide with ammonia over ZSM-5 based catalysts for diesel engine applications[J].Catalysis Letters,2008,121:111-117.
[28] Iwasaki M,Yamazzaki K,Shinjoh H.NOx reduction performance of fresh and aged Fe-zeolites prepared by CVD:Effects of zeolite structure and Si/Al2 ratio[J].Applied Catalysis B:Environmental,2011,102(1/2):302-309.
[1] 南变娣, 靳长清, 张弛, 肖泽民, 张怡静. 氧化镍基锂离子电池负极材料研究进展[J]. 现代化工, 2021, 41(5): 20-23,29.
[2] 赵中昆, 许志志, 陈鑫. 单原子催化剂在电催化还原领域的研究进展[J]. 现代化工, 2021, 41(5): 45-48.
[3] 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82,87.
[4] 吴芹, 石泉, 宋淑芬, 黎汉生, 史大昕, 赵芸, 矫庆泽. 磺酸树脂催化合成对叔丁基苯甲酸甲酯的研究[J]. 现代化工, 2021, 41(5): 98-102.
[5] 何玲, 孙福海, 徐琪鹏. 电沉积法从废弃FCC催化剂中回收稀土元素的研究[J]. 现代化工, 2021, 41(5): 108-113.
[6] 刘建武, 严生虎, 张跃. 微波促进卤素交换氟化反应合成邻氟苯腈的研究[J]. 现代化工, 2021, 41(5): 148-152.
[7] 安英杰, 王若琳, 李田田, 徐玉枫, 牛春梅. 高取代度辛烯基琥珀酸环糊精酯的制备及其性能研究[J]. 现代化工, 2021, 41(5): 158-162.
[8] 王玉春, 刘赵荣, 谭超, 孙鸿, 李忠, 薛雨佳. 铜源阴离子对CuY催化剂性能的影响[J]. 现代化工, 2021, 41(5): 163-167.
[9] 马珂珂, 程相林, 赵建宏, 王建设, 孙世昌, 周鹏举, 李蒙, 王晨. 相反转法制备丙烯酸改性醇酸树脂乳液的研究[J]. 现代化工, 2021, 41(5): 186-190.
[10] 苏暐光, 孔磊. Cu基催化剂上二氧化碳加氢合成甲醇的研究进展[J]. 现代化工, 2021, 41(4): 26-29.
[11] 于祺, 李瑞峰, 田宏宇, 吴显军. 浆态床渣油加氢油溶性催化剂研究进展[J]. 现代化工, 2021, 41(4): 34-37.
[12] 赵文祥, 杨双霞, 陈雷, 孙来芝, 谢新苹, 伊晓路, 司洪宇, 于萌萌, 华栋梁. 生物质热化学催化转化制富氢合成气研究进展[J]. 现代化工, 2021, 41(4): 38-42.
[13] 张甄, 秦绍东, 何若南, 李加波, 邢爱华. 合成气直接制备低碳烯烃催化剂研究进展[J]. 现代化工, 2021, 41(4): 58-62.
[14] 张鹏, 贾媛媛, 唐中华, 刘兴誉, 刘军强, 刘光利, 巫树锋. 钒钛系脱硝催化剂抗SO2和H2O中毒性能研究进展[J]. 现代化工, 2021, 41(4): 67-71.
[15] 王彦博, 康菡子, 袁璐璇, 蒋文伟. Gemini型表面活性剂改性蒙脱土的制备与应用研究进展[J]. 现代化工, 2021, 41(4): 77-81.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn