Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (5): 20-23,29    DOI: 10.16606/j.cnki.issn0253-4320.2021.05.005
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
氧化镍基锂离子电池负极材料研究进展
南变娣, 靳长清, 张弛, 肖泽民, 张怡静
西安工业大学材料与化工学院, 陕西 西安 710021
Research progress in NiO anode materials for lithium-ion batteries
NAN Bian-di, JIN Chang-qing, ZHANG Chi, XIAO Ze-min, ZHANG Yi-jing
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
下载:  PDF (3674KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决NiO体积膨胀(95%)、充放电过程中活性材料严重聚集粉碎以及导电性差等问题,进一步促进锂离子电池的商业化应用进程,对NiO材料的选择和结构改性进行了总结,并论述具有代表性的NiO复合材料的制备方法和电化学性能,最后分析了NiO负极材料存在的问题,并对其发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
南变娣
靳长清
张弛
肖泽民
张怡静
关键词:  锂离子电池  NiO  体积膨胀  循环稳定性  改性    
Abstract: In order to solve the problems of NiO,such as volume expansion (95%),serious aggregation crushing of active materials and poor conductivity during charging and discharging,and further promote the commercialization of lithium-ion batteries,the selection and structural modification of NiO materials are summarized,and the preparation methods and electrochemical properties of representative NiO composite materials are described.Existing problems for NiO anode materials are analyzed and their development trends are prospected.
Key words:  lithium-ion battery    NiO    volume expansion    cycle stability    modification
收稿日期:  2020-06-22      修回日期:  2021-03-18           出版日期:  2021-05-20
ZTFLH:  TM912  
基金资助: 国家自然科学基金项目(11404251,51671151,51502233)
通讯作者:  靳长清(1982-),男,博士,副教授,研究方向为锂离子电池负极材料,通讯联系人,eaglejin@xatu.edu.cn。    E-mail:  eaglejin@xatu.edu.cn
作者简介:  南变娣(1995-),女,硕士生
引用本文:    
南变娣, 靳长清, 张弛, 肖泽民, 张怡静. 氧化镍基锂离子电池负极材料研究进展[J]. 现代化工, 2021, 41(5): 20-23,29.
NAN Bian-di, JIN Chang-qing, ZHANG Chi, XIAO Ze-min, ZHANG Yi-jing. Research progress in NiO anode materials for lithium-ion batteries. Modern Chemical Industry, 2021, 41(5): 20-23,29.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.05.005  或          https://www.xdhg.com.cn/CN/Y2021/V41/I5/20
[1] Yi R,Dai F,Gordin M L,et al.Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes[J].Advanced Energy Materials,2013,3(11):1507-1515.
[2] Luo W,Chen X,Xia Y,et al.Surface and interface engineering of silicon-based anode materials for lithium-ion batteries[J].Adv Energy Mater,2017,7(24):1-28.
[3] Xiao Q Z,Fan Y,Wang X H,et al.A multilayer Si/CNT coaxial nano fiber LiB anode with a high areal capacity[J].Energy Environ Sci,2014,7(2):655-661.
[4] Jadhav H S,Rai A K,Lee J Y,et al.Enhanced electrochemical performance of flower-like Co3O4 as an anode material for high performance lithium-ion batteries[J].Electrochimica Acta,2014,146:270-277.
[5] Reddy M V,Subba Rao G V,Chowdari B V R.Metal oxides and oxysalts as anode materials for Li-ion batteries[J].Chemical Reviews,2013,113(7):5364-5457.
[6] Liang C,Gao M,Pan H,et al.Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries[J].Journal of Alloys & Compounds,2013,575:246-256.
[7] Hao S,Zhang B,Ball S,et al.Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries[J].Materials & design,2016,92:160-165.
[8] Zhang J J,Yu A S.Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries[J].Science Bulletin,2015,60(9):823-838.
[9] Zhang W J.A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J].Journal of Power Sources,2011,196(1):13-24.
[10] Liu X H,Zhong L,Huang S,et al.Size-dependent fracture of silicon nanoparticles during lithiation[J].ACS Nano,2012,6(2):1522-1531.
[11] Khalaji A D,Soleymanifard M,Jarosova M,et al.Synthesis,characterization,and antibacterial activity of copper(Ⅱ) oxide nanoparticles prepared by thermal decomposition[J].Journal of Surface Investigation X-ray Synchrotron and Neutron Techniques,2020,14(5):961-964.
[12] Hong Y,Yang J,Xu J,et al.Template-free synthesis of hierarchical NiO microtubes as high performance anode materials for Li-ion batteries[J].Current Applied Physics,2019,19(6):715-720.
[13] Pang H,Guan B,Sun W,et al.Metal-organic-frameworks derivation of mesoporous NiO nanorod for high-performance lithium-ion batteries[J].Electrochimica Acta,2016,213:351-357.
[14] Zheng Q,Liu Y,Guo H,et al.Synthesis of hierarchical 1D NiO assisted by microwave as anode material for lithium-ion batteries[J].Materials Research Bulletin,2018,98:155-159.
[15] Varghese B,Reddy M V,Yan W Z,et al.Fabrication of NiO nanowall electrodes for high performance lithium ion battery[J].Chemistry of Materials,2008,20(10):3360-3367.
[16] Zhu Y,Guo H,Wu Y,et al.Surface-enabled superior lithium storage of high quality ultrathin NiO nanosheets[J].Journal of Materials Chemistry A,2014,2(21):7904-7911.
[17] Wang J,Su,P P,Zhang J,et al.The formation of yolk-shell structured NiO nanospheres with enhanced lithium storage capacity[J].Materials Chemistry Frontiers,2019,3:1619-1625.
[18] Hao S J,Zhang B W,Ball S,et al.Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries[J].Materials & Design,2016,92:160-165.
[19] Guo A,Li Y,Liu K,et al.Porous NiO architecture prepared with coordination polymer precursor as a high performance anode material for Li-ion batteries[J].RSC Advances,2015,5:89269-89272.
[20] Wei K X,Liang Z R,Kui Z S,et al.Electrospinning synthesis of 3D porous NiO nanorods as anode material for lithium-ion batteries[J].Materials Science Poland,2016,34(2):227-232.
[21] Cheng M Y,Hwang B J.Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery[J].Journal of Power Sources,2010,195(15):4977-4983.
[22] Jo M S,Ghosh S,Munjeong S,et al.Coral-like yolk-shell-structured nickel oxide/carbon composite microspheres for high-performance Li-ion storage anodes[J].Nano Micro Letters,2019,11(1):42-59.
[23] Tian J,Shao Q,Dong X,et al.Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance[J].Electrochimica Acta,2018,261:236-245.
[24] Zhou Z,Chen F,Kuang T,et al.Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J].Electrochimica Acta,2018,274:288-297.
[25] Fu J,Ju F,Wen B,et al.3D hierarchically porous NiO/graphene hybrid paper anode for long-life and high rate cycling flexible Li-ion batteries[J].Journal of Energy Chemistry,2020,47:172-179.
[26] He Y,Yu X,Wang Y,et al.Alumina-coated patterned amorphous silicon as the anode for a lithium ion battery with high coulombic efficiency[J].Advanced Materials,2011,23(42):4938-4941.
[27] Lim J,Lee S,Suzuki K,et al.Synthesis,structure and electrochemical properties of novel Li-Co-Mn-O epitaxial thin-film electrode using layer-by-layer deposition process[J].Journal of Power Sources,2015,279:502-509.
[28] Yang X,Yu R,Ge L,et al.Facile synthesis and performances of nanosized Li2TiO3-based shell encapsulated LiMn1/3Ni1/3Co1/3O2 microspheres[J].Journal of Materials Chemistry,2014,2(22):8362-8368.
[29] Ruan X,Yang Y,Pu K,et al.Superior long term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries[J].Journal of Power Sources,2018,397:134-142.
[1] 赵聆然, 熊艳. 钙钛矿太阳电池光吸收层的研究进展[J]. 现代化工, 2021, 41(5): 68-72.
[2] 马珂珂, 程相林, 赵建宏, 王建设, 孙世昌, 周鹏举, 李蒙, 王晨. 相反转法制备丙烯酸改性醇酸树脂乳液的研究[J]. 现代化工, 2021, 41(5): 186-190.
[3] 毛素华, 方岩雄, 李栋, 党海峰, 刘全兵. 石墨相氮化碳改性及其在电化学能源转换和储存中的应用[J]. 现代化工, 2021, 41(4): 17-21,25.
[4] 张鹏, 贾媛媛, 唐中华, 刘兴誉, 刘军强, 刘光利, 巫树锋. 钒钛系脱硝催化剂抗SO2和H2O中毒性能研究进展[J]. 现代化工, 2021, 41(4): 67-71.
[5] 王彦博, 康菡子, 袁璐璇, 蒋文伟. Gemini型表面活性剂改性蒙脱土的制备与应用研究进展[J]. 现代化工, 2021, 41(4): 77-81.
[6] 郭贺虎, 胡建臣, 张克勤. 静电纺在可逆离子电池负极材料制备中的应用[J]. 现代化工, 2021, 41(3): 15-20.
[7] 郝军杰, 郭成, 高翔鹏, 李明阳, 龙红明. 甘蔗渣活性炭的制备及应用研究进展[J]. 现代化工, 2021, 41(3): 31-35.
[8] 张家晶, 郑永杰, 金春雪, 杨万丽, 崔婷婷, 王雪, 王永鹤. g-C3N4基光催化剂改性的研究进展[J]. 现代化工, 2021, 41(3): 42-47.
[9] 刘作松, 何红军, 潘兴祥, 沈天洋, 朱明, 梅华. 碱土金属改性MCM-41对氨气吸附高温性能的影响[J]. 现代化工, 2021, 41(3): 175-181.
[10] 胡月, 李凤艳, 蔚红建, 赵天波. 氟硅共聚改性提高聚丙烯酸酯力学和疏水性能的研究[J]. 现代化工, 2021, 41(2): 120-123,129.
[11] 方雪, 张肖, 卢锋奇. 柔性TiO2@CNFs@SnS2复合纤维膜的制备及电化学性能研究[J]. 现代化工, 2021, 41(2): 166-171.
[12] 张春晓, 唐逸飞. 纳米金负载两性粘胶纤维的制备及催化性能研究[J]. 现代化工, 2021, 41(2): 177-182.
[13] 左一杰, 李凤艳, 蔚红建, 赵天波. 氟硅复合改性水性聚氨酯的制备及性能研究[J]. 现代化工, 2021, 41(1): 123-127.
[14] 陈红芳, 王广智, 周思敏, 冯丽娜, 王东东, 胡磊. 改性沸石在污水处理工艺中的应用进展[J]. 现代化工, 2020, 40(S1): 59-63,70.
[15] 吕存彬, 刘清华, 李闯, 郭志远, 王永杰, 项玉芝. 不同银引入方式的多级孔分子筛的制备及表征[J]. 现代化工, 2020, 40(S1): 190-194.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn