Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (4): 162-166    DOI: 10.16606/j.cnki.issn0253-4320.2021.04.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Ca(OH)2对煤基活性炭及其催化甲烷裂解制氢的影响
罗化峰, 李通达, 乔元栋, 宁掌玄, 薄春丽
山西大同大学煤炭工程学院, 山西 大同 037003
Effects of Ca(OH)2 on coal-based activated carbon and its catalytic property in methane decomposition to hydrogen
LUO Hua-feng, LI Tong-da, QIAO Yuan-dong, NING Zhang-xuan, BO Chun-li
Coal Engineering College, Shanxi Datong University, Datong 037003, China
下载:  PDF (3780KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高煤基活性炭(AC)在催化甲烷裂解制氢反应中的活性,通过煤原位添加Ca(OH)2调控KOH化学活化法所制活性炭(xCa-AC)的结构和表面性质。利用FT-IR、XRD、SEM等对其进行分析,结果表明,煤原位添加Ca(OH)2可提高xCa-AC的比表面积和孔容,也可提高xCa-AC表面的含氧基团浓度和炭结构的无序性。在催化甲烷裂解制氢过程中,xCa-AC较AC有更高的转化率,而且积碳中碳纤维的数量增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗化峰
李通达
乔元栋
宁掌玄
薄春丽
关键词:  活性炭  甲烷裂解  氢氧化钙  氢气  碳纤维    
Abstract: In order to improve the activity of coal-based activated carbon (AC) in catalytic decomposition of methane to produce hydrogen,the structure and surface properties of activated carbon (xCa-AC) prepared by KOH chemical activation method are adjusted by adding Ca(OH)2 in situ to the coal.FT-IR,XRD,SEM and other analysis results show that the in-situ addition of Ca(OH)2 on coal can increase specific surface area and pore volume of xCa-AC,as well as the concentration of oxygen-containing groups on the surface of xCa-AC and the disorder of carbon structure.In the process of catalytic decomposition of methane to hydrogen,xCa-AC contributes a higher conversion rate than AC,and increases the number of carbon fibers in the carbon deposit.
Key words:  activated carbon    methane decomposition    calcium hydroxide    hydrogen    carbon fiber
收稿日期:  2020-05-21      修回日期:  2021-02-02          
ZTFLH:  TQ529.1  
基金资助: 山西省应用基础研究资助项目(201801D121038);山西省高校科技创新项目(201802094);大同市基础研究计划资助项目(2017132)
通讯作者:  罗化峰(1981-),男,博士,副教授,主要从事煤的洁净利用和煤矸石的综合利用,通讯联系人,xzyzlhb@163.com。    E-mail:  xzyzlhb@163.com
引用本文:    
罗化峰, 李通达, 乔元栋, 宁掌玄, 薄春丽. Ca(OH)2对煤基活性炭及其催化甲烷裂解制氢的影响[J]. 现代化工, 2021, 41(4): 162-166.
LUO Hua-feng, LI Tong-da, QIAO Yuan-dong, NING Zhang-xuan, BO Chun-li. Effects of Ca(OH)2 on coal-based activated carbon and its catalytic property in methane decomposition to hydrogen. Modern Chemical Industry, 2021, 41(4): 162-166.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.04.034  或          https://www.xdhg.com.cn/CN/Y2021/V41/I4/162
[1] Khalifeh O,Mosallanejad A,Taghvaei H,et al.Decomposition of methane to hydrogen using nanosecond pulsed plasma reactor with different active volumes,voltages and frequencies[J].Applied Energy,2016,169:585-596.
[2] Ashik U P M,Daud W M A W,Hayashi J.A review on methane transformation to hydrogen and nanocarbon:Relevance of catalyst characteristics and experimental parameters on yield[J].Renewable Sustainable Energy Reviews,2017,76:743-767.
[3] Tanggarnjanavalukul C,Donphai W,Witoon T,et al.Deactivation of nickel catalysts in methane cracking reaction:Effect of bimodal meso-macropore structure of silica support[J].Chemical Engineering Journal,2015,262:364-371.
[4] Ren J,Cao J,Zhao X,et al.Extension of catalyst lifetime bydoping of Ce in Ni-loaded acid-washed Shengli lignite char for biomass catalytic gasification[J].Catalysis Science & Technology,2017,7:5741-5749.
[5] Shen Y,Lua A C.Synthesis of Ni and Ni-Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane[J].Applied Catalysis B:Environmental,2015,164:61-69.
[6] Italiano G,Delia A,Espro C,et al.Methane decomposition over Co thin layer supported catalysts to produce hydrogen for fuel cell[J].International Journal of Hydrogen Energy,2010,35:11568-11575.
[7] Jana P,Víctor A,Coronado J M,et al.Cobalt based catalysts prepared by Pechini method for CO2-free hydrogen production by methane decomposition[J].International Journal of Hydrogen Energy,2010,35:10285-10294.
[8] Nuernberg G B,Fajardo H V,Mezalira D Z,et al.Preparation and evaluation of Co/Al2O3 catalysts in the production of hydrogen from thermo-catalytic decomposition of methane:influence of operating conditions on catalyst performance[J].Fuel,2008,87:1698-1704.
[9] Dasireddy V D B C,Likozar B.Activation and decomposition of methane over cobalt-,copper-,and iron-based heterogeneous catalysts for COx-free hydrogen and multiwalled carbon nanotube production[J].Energy Technology,2017,5:1344-1355.
[10] Calafat A,sanchez N.Production of carbon nanotubes through combination of catalyst reduction and methane decomposition over Fe-Ni/ZrO2 catalysts prepared by the citrate method[J].Applied Catalysis A:General,2016,528:14-23.
[11] Bayat N,Rezaei M,Meshkani F.Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni-Pd/Al2O3 catalyst[J].International Journal of Hydrogen Energy,2016,41:5494-5503.
[12] Zhang J,Li X,Chen H,et al.Hydrogen production by catalytic methane decomposition:Carbon materials as catalysts or catalyst supports[J].International Journal of Hydrogen Energy,2017,42:19755-19775.
[13] Muradov N.Catalysis of methane decomposition over elemental carbon[J].Catalysis Communications,2001,2:89-94.
[14] Zhang J,Jin L,Liu S,et al.Mesoporous carbon prepared from direct coal liquefaction residue for methane decomposition[J].Carbon,2012,50:952-959.
[15] Zhang J,Jin L,Cheng J,et al.Preparation and applications of hierarchical porous carbons from direct coal liquefaction residue[J].Fuel,2013,109:2-8.
[16] Zhang J,Jin L,Li Y,et al.Hierarchical porous carbon catalyst for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition[J].International Journal of Hydrogen Energy,2013,38:8732-8740.
[17] Wang J,Jin L,Zhou Y,et al.Effect of Ca(NO3)2 addition in coal on properties of activated carbon for methane decomposition to hydrogen[J].Fuel Processing Technology,2018,176:85-90.
[1] 袁鑫悦, 吴洁, 盛永祥. 基于专利分析的碳纤维技术发展研究[J]. 现代化工, 2021, 41(3): 6-11,14.
[2] 郝军杰, 郭成, 高翔鹏, 李明阳, 龙红明. 甘蔗渣活性炭的制备及应用研究进展[J]. 现代化工, 2021, 41(3): 31-35.
[3] 秦海洋, 郑永杰, 田景芝, 刘雯雯, 赵云鹏, 郑禾山, 李硕. Bi2O3-TiO2/污泥活性炭复合催化剂的制备及其可见光催化性能研究[J]. 现代化工, 2021, 41(3): 154-158.
[4] 杨晓航, 郭明钢, 代岩, 郗元. 净化瓦斯气中氢气和轻烃回收工艺模拟与优化[J]. 现代化工, 2021, 41(2): 235-240.
[5] 孟雨辰, 王彦辉, 荆蓉, 张锐涛, 张兴刚. 碳纤维复合材料用环氧树脂体系研究进展[J]. 现代化工, 2020, 40(S1): 75-78.
[6] 张肖肖. 不同晶粒尺寸HZSM-5载Pt催化剂上氢气选择催化还原氮氧化物的研究[J]. 现代化工, 2020, 40(9): 142-147.
[7] 李润润, 张宁霜, 李世友, 李春雷, 丁浩. 生物质在超级电容器活性炭材料中的研究进展[J]. 现代化工, 2020, 40(8): 54-57.
[8] 安璐, 肖鹏飞. 活性炭活化过硫酸钠氧化降解盐酸金霉素的研究[J]. 现代化工, 2020, 40(8): 103-106,112.
[9] 冼学权, 杜芳黎, 唐培朵, 顾传君, 黎演明. 木质素基超高比表面积活性炭的制备及其吸附性能[J]. 现代化工, 2020, 40(7): 90-94.
[10] 王芳平, 张劲斌, 李晨阳, 罗英涛, 杜娟, 汪艳芳. 灰分对玉米芯基活性炭电化学性能的影响[J]. 现代化工, 2020, 40(5): 190-193.
[11] 张旭. 氢燃料电池汽车加氢站相关标准分析与建议[J]. 现代化工, 2020, 40(2): 1-6.
[12] 赵立红, 闫捷, 梁旭, 张士祥, 蒋元力, 崔发科, 魏灵朝. 提高煤制乙二醇紫外透光率的研究进展[J]. 现代化工, 2020, 40(2): 76-78.
[13] 王雪清, 赵越, 蒋广安, 马传军. 改性活性炭复合催化剂催化臭氧氧化处理石化污水的研究[J]. 现代化工, 2020, 40(2): 172-176.
[14] 邓猛, 杨文斌, 李海波, 肖磊, 尚官郧. 活性炭/双氧水/臭氧体系对某染料废水生化出水脱色的中试研究[J]. 现代化工, 2020, 40(11): 214-218.
[15] 张卫风, 李娟, 王秋华, 马伟春. 基于钙法的燃煤烟气中CO2混合富液解吸及再生研究[J]. 现代化工, 2020, 40(10): 115-119.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn