Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (4): 87-91,97    DOI: 10.16606/j.cnki.issn0253-4320.2021.04.019
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
Cu-Pd-BTC常温催化氧化异丙醇的研究
郝利静1, 丁辉2, 尚尉2, 崔家浩2
1. 天津大学化工学院, 天津 300350;
2. 天津大学环境科学与工程学院, 天津 300350
Study on Cu-Pd-BTC catalytic oxidation of isopropanol at normal temperature
HAO Li-jing1, DING Hui2, SHANG Wei2, CUI Jia-hao2
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
2. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
下载:  PDF (6435KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高常温下对VOCs高效降解中催化剂的活性、降低催化反应温度,以异丙醇为研究对象,通过Pd掺杂的Cu-BTC改性MOF催化剂实现对异丙醇的常温催化降解。结果表明,当Cu与Pd的摩尔比为12:1时,Pd掺杂改性Cu-BTC具有最佳的催化活性,能够在35℃条件下实现对异丙醇的完全降解。对活化温度的优化研究发现,150℃活化后的Cu-Pd-BTC的活性最佳,催化剂在循环利用7次后仍能达到93%以上的降解效果。此外,通过SEM、EDS、XRD等表征手段揭示了Cu-Pd-BTC催化剂的微观结构,证明了Cu-BTC的成功合成,阐明了催化剂的结构与催化活性的关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝利静
丁辉
尚尉
崔家浩
关键词:  金属有机框架  异丙醇  催化氧化  挥发性有机物  常温    
Abstract: Normal temperature catalytic oxidation technology is an emerging VOCs treatment technology.In order to improve the activity of the catalyst and decrease the temperature needed by catalytic reaction in efficient degradation of VOCs,the catalytic degradation of isopropanol at normal temperature is mainly achieved over Pd-doped Cu-BTC modified MOF catalyst.Experimental results show that Pd-doped Cu-BTC has the best catalytic activity and can completely degrade isopropanol at 35℃ when the molar ratio of Cu and Pd is 12∶1.It is found through optimizing the activation temperature that Cu-Pd-BTC activated at 150℃ has the best catalytic activity,and can achieve a degradation effect of more than 93% after 7 cycles of recycling.In addition,the microstructure of Cu-Pd-BTC catalyst is revealed by SEM,EDS,XRD and other characterization methods,which proves the successful synthesis of Cu-BTC and further clarifies the relationship between the structure and catalytic activity of the catalyst.
Key words:  metal organic framework    isopropanol    catalytic oxidation    volatile organic compounds    normal temperature
收稿日期:  2020-06-16      修回日期:  2021-02-08          
ZTFLH:  X511  
基金资助: 国家重点研发计划资助项目(2018YFC0705300);天津市科技计划项目(17YFNZNC00060)
通讯作者:  丁辉(1976-),男,博士,副教授,主要从事大气及水体污染治理、土壤改性的研究,通讯联系人,dinghui@tju.edu.cn。    E-mail:  dinghui@tju.edu.cn
作者简介:  郝利静(1994-),女,硕士研究生,研究方向为功能材料的制备及多相催化,995141514@qq.com
引用本文:    
郝利静, 丁辉, 尚尉, 崔家浩. Cu-Pd-BTC常温催化氧化异丙醇的研究[J]. 现代化工, 2021, 41(4): 87-91,97.
HAO Li-jing, DING Hui, SHANG Wei, CUI Jia-hao. Study on Cu-Pd-BTC catalytic oxidation of isopropanol at normal temperature. Modern Chemical Industry, 2021, 41(4): 87-91,97.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.04.019  或          https://www.xdhg.com.cn/CN/Y2021/V41/I4/87
[1] Wang F,Dai H,Deng J,et al.Manganese oxides with rod-,wire-,tube-,and flower-like morphologies:Highly effective catalysts for the removal of toluene[J].Environmental Science & Technology,2012,46(7):4034-4041.
[2] 生态环境部.挥发性有机物无组织排放控制标准:GB 37822-2019[S].北京:中国环境出版集团,2019-05-24.
[3] Roth P,Yang J,Peng W,et al.Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles[J].Atmospheric Environment,2020,220:117064.
[4] Pan K L,Pan G T,Chong S,et al.Removal of VOCs from gas streams with double perovskite-type catalysts[J].Journal of Environmental Sciences,2018,69:205-216.
[5] Wang B,Yao S,Peng Y,et al.Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge[J].Journal of Environmental Chemical Engineering,2018,6(4):3819-3826.
[6] Zhang G,Liu Y,Zheng S,et al.Adsorption of volatile organic compounds onto natural porous minerals[J].Journal of Hazardous Materials,2019,364:317-324.
[7] Belaissaoui B,Le Moullec Y,Favre E.Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air:A generic approach[J].Energy,2016,95:291-302.
[8] Zang M,Zhao C,Wang Y,et al.A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J].Journal of Saudi Chemical Society,2019,23(6):645-654.
[9] Malayeri M,Haghighat F,Lee C.Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air:A review[J].Building and Environment,2019,154:309-323.
[10] Aghbolaghy M,Ghavami M,Soltan J,et al.Effect of active metal loading on catalyst structure and performance in room temperature oxidation of acetone by ozone[J].Journal of Industrial and Engineering Chemistry,2019,77:118-127.
[11] Ryu H W,Song M Y,Park J S,et al.Removal of toluene using ozone at room temperature over mesoporous Mn/Al2O3 catalysts[J].Environmental Research,2019,172:649-657.
[12] Sun Y,Ma M,Tang B,et al.Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases[J].Journal of Alloys and Compounds,2019,808:151721.
[13] Dai Y,Li M,Liu F,et al.Graphene oxide wrapped copper-benzene-1,3,5-tricarboxylate metal organic framework as efficient absorbent for gaseous toluene under ambient conditions[J].Environmental Science and Pollution Research,2019,26(3):2477-2491.
[14] Zhang X,Shi X,Chen J,et al.The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene[J].Journal of Environmental Chemical Engineering,2019,7(5):103405.
[15] Raoof J,Hosseini S R,Ojani R,et al.MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction[J].Energy,2015,90:1075-1081.
[16] Mahmoodi N M,Abdi J.Nanoporous metal-organic framework (MOF-199):Synthesis,characterization and photocatalytic degradation of Basic Blue 41[J].Microchemical Journal,2019,144:436-442.
[17] Salehi S,Anbia M.High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199[J].Energy & Fuels,2017,31(5):5376-5384.
[18] Wu Y,Lv Z,Zhou X,et al.Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture[J].Chemical Engineering Journal,2019,355:815-821.
[19] Luo Y,Liu Z,Wu G,et al.Anisotropic Cu@Cu-BTC core-shell nanostructure for memory device[J].Chinese Chemical Letters,2019,30(5):1093-1096.
[20] Shi R,Zhang Z,Fan H,et al.Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal[J].Applied Surface Science,2017,394:394-402.
[21] Vishnyakov A,Ravikovitch P I,Neimark A V,et al.Nanopore structure and sorption properties of Cu-BTC metal-organic framework[J].Nano Letters,2003,3(6):713-718.
[1] 喻昌木, 张荣, 卢小鸾, 孙晓霞, 杨敏, 彭黔荣. 金属有机框架纳米材料及在生物传感器中的应用研究进展[J]. 现代化工, 2021, 41(2): 33-37.
[2] 余文卉, 王涛, 李谭香凝, 王雨婷, 胡兵. 新型磁性离子液体的萃取氧化脱硫研究[J]. 现代化工, 2021, 41(2): 188-192.
[3] 赵连成. 生物法处理挥发性有机废气的研究进展[J]. 现代化工, 2021, 41(1): 72-76.
[4] 李从, 王瑶, 孙志超, 王安杰, 遇治权, 刘颖雅. AgI/MOF-253的制备及其可见光催化性能研究[J]. 现代化工, 2021, 41(1): 82-87.
[5] 徐文凯, 王飞, 宁平, 孙鑫, 王驰, 宋辛, 牛璨, 李凯. Cu/ACNT催化剂在不同反应条件下脱除AsH3的研究[J]. 现代化工, 2021, 41(1): 128-132.
[6] 郭清霞, 李凯, 马懿星, 孙鑫, 宋辛, 王驰, 宁平, 王飞. 金属有机框架材料MIL-53(Fe)低温脱除COS和CS2[J]. 现代化工, 2020, 40(S1): 107-110,116.
[7] 汪鹏, 王学海, 陈高升, 刘忠生, 王宽岭, 刘淑鹤. 整体式催化氧化催化剂用于VOCs废气处理的研究[J]. 现代化工, 2020, 40(S1): 157-158,165.
[8] 王旭, 张峰, 崔建国. K2FeO4-PAC联用混凝处理低浓度含氟有机废水的研究[J]. 现代化工, 2020, 40(S1): 170-175.
[9] 张春阳, 袁志国, 段稀凡, 段姗姗, 刘有智. 逆流旋转填料床吸收异丙醇气体的传质性能研究[J]. 现代化工, 2020, 40(9): 80-84.
[10] 田贺, 易红宏, 唐晓龙, 赵顺征, 张晓东, 任晨阳. 甲硫醇恶臭气体的催化剂氧化研究进展[J]. 现代化工, 2020, 40(8): 35-38.
[11] 黄金花, 杨丙星, 叶丽萍. 组分含量对MnO2-CuO/Y常温催化臭氧氧化甲苯性能的影响[J]. 现代化工, 2020, 40(8): 129-133,138.
[12] 贾彪, 颜家保, 胡杰, 王兴龙, 连冰冰. 臭氧催化氧化法深度处理焦化废水工艺研究[J]. 现代化工, 2020, 40(8): 134-138.
[13] 陈彦广, 徐瑞晗, 吴凯, 于加蒙, 邓冀童, 张亚男. 纳米金属氧化物的合成及其催化氧化有机物的研究进展[J]. 现代化工, 2020, 40(7): 30-35.
[14] 李磊, 杨丙星, 申宏鹏, 叶丽萍, 金政伟, 黄金花. 载体形貌对CeO2/Cu0.2Co0.8Oδ催化剂催化CO氧化性能的影响[J]. 现代化工, 2020, 40(7): 150-154.
[15] 马会霞, 周峰, 张淑梅, 乔凯. 异丙醇脱水制备丙烯反应热力学分析[J]. 现代化工, 2020, 40(6): 196-198,203.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn