Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (4): 82-86    DOI: 10.16606/j.cnki.issn0253-4320.2021.04.018
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
氟掺杂α-Fe2O3的合成及光催化性能研究
韩晴玉, 李呈呈, 骆艳芳, 那平
天津大学化工学院, 天津 300350
Preparation of fluorine doped α-Fe2O3 and its photocatalytic performance
HAN Qing-yu, LI Cheng-cheng, LUO Yan-fang, NA Ping
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
下载:  PDF (3676KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以六水合氯化铁和氟化钠为原料、柠檬酸钠为络合剂,采用水热法制备氟掺杂的前驱体,在空气中于650℃热处理得到α-Fe2O3。通过XRD、SEM、EDS和FT-IR对样品结构、形貌与组成进行表征,考察其在可见光下对亚甲基蓝(MB)的光催化降解性能。结果表明,氟的掺杂使材料的粒径减小,分散度提高;同时,材料的带隙能缩小,光吸收能力增强。最优样品Fe2O3-3对亚甲基蓝的光催化降解率为97.78%,经过4次重复使用后,对亚甲基蓝的降解率为94.58%,仍具有较好的降解性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩晴玉
李呈呈
骆艳芳
那平
关键词:  α-Fe2O3  光催化降解  掺杂  亚甲基蓝    
Abstract: Using ferric chloride hexahydrate and sodium fluoride as raw materials,and sodium citrate as a complexing agent,a fluorine-doped precursor is prepared via the hydrothermal method.F-doped α-Fe2O3 can be obtained through the thermal treatment of the precursor in the air at 650℃.Its structure,composition and morphology are characterized by XRD,SEM,EDS and FT-IR,and its photocatalytic degradation performance to methylene blue (MB) under visible light is investigated.It is shown that the doping of fluorine reduces the particle size of the material and increases the degree of dispersion.Meanwhile,the band gap of the material is reduced and the light absorption capacity is enhanced.The photocatalytic degradation rate of the best sample Fe2O3-3 to MB is 97.78%.After 4 times of repeated use,the degradation rate of MB by F-doped α-Fe2O3 can still reach 94.58%,representing a good degradation performance.
Key words:  α-Fe2O3    photocatalytic degradation    doping    methylene blue
收稿日期:  2020-06-17      修回日期:  2021-02-18          
ZTFLH:  TQ138.1  
基金资助: 国家自然科学基金(21511130020)
通讯作者:  那平(1966-),男,博士,研究员,研究方向为水环境处理,通讯联系人,naping@tju.edu.cn。    E-mail:  naping@tju.edu.cn
作者简介:  韩晴玉(1994-),女,硕士研究生,研究方向为水环境处理,eveolve@163.com
引用本文:    
韩晴玉, 李呈呈, 骆艳芳, 那平. 氟掺杂α-Fe2O3的合成及光催化性能研究[J]. 现代化工, 2021, 41(4): 82-86.
HAN Qing-yu, LI Cheng-cheng, LUO Yan-fang, NA Ping. Preparation of fluorine doped α-Fe2O3 and its photocatalytic performance. Modern Chemical Industry, 2021, 41(4): 82-86.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.04.018  或          https://www.xdhg.com.cn/CN/Y2021/V41/I4/82
[1] Benkhaya S,Rabet M,Harf A,et al.A review on classifications,recent synthesis and applications of textile dyes[J].Inorganic Chemistry Communications,2020,115:107891.
[2] Fritzke W,Salla E G,Bagatini M D,et al.Peroxidase of Cedrela fissilis leaves:Biochemical characterization and toxicity of enzymatically decolored solution of textile dye Brilliant Sky-Blue G[J].Biocatalysis and Agricultural Biotechnology,2020,24:101553.
[3] Rathour R,Jain K,Madamwar D,et al.Microaerophilic biodegradation of raw textile effluent by synergistic activity of bacterial community DR4[J].Journal of Environmental Management,2019,250:109549.
[4] Wheeler D A,Wang G,Ling Y,et al.Nanostructured hematite:Synthesis,characterization,charge carrier dynamics,and photoelectrochemical properties[J].Energy & Environmental Science,2012,5(5):6672-6682.
[5] 杨莹,袁青,张立.α-Fe2O3纳米粒子制备方法的研究进展[J].宜春学院学报,2020,42(3):31-36.
[6] Zhang L,Bao Z,Yu X,et al.Rational design of α-Fe2O3/reduced graphene oxide composites:Rapid detection and effective removal of organic pollutants[J].ACS Applied Materials & Interfaces,2016,8(10):6431-6438.
[7] Marschall R,Wang L.Non-metal doping of transition metal oxides for visible-light photocatalysis[J].Catalysis Today,2014,225:111-135.
[8] Demirci S,Yurddaskal M,Dikici T,et al.Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances[J].Journal of Hazardous Materials,2018,345:27-37.
[9] Wang T T,Li Y,et al.Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts[J].Journal of Fuel Chemistry and Technology,2019,47(3):287-296.
[10] Guo L,Chen F,Fan X,et al.S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J].Applied Catalysis B:Environmental,2010,96(1-2):162-168.
[11] Chang J,Zhang Q,Liu Y,et al.Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol[J].Journal of Materials Science:Materials in Electronics,2018,29(10):8258-8266.
[12] Wang C W,Yang S,Fang W Q,et al.Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting[J].Nano Letters,2015,16(1):427-433.
[13] Takenaka S.Formation of filamentous carbons over supported Fe catalysts through methane decomposition[J].Journal of Catalysis,2004,222(2):520-531.
[14] Jin X,Zhuang J,Zhang Z,et al.Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH[J].Journal of Colloid and Interface Science,2015,443:125-130.
[15] Liu W,Zhao X,Borthwick A G L,et al.Dual-enhanced photocatalytic activity of Fe-deposited titanate Nanotubes Used for Simultaneous Removal of As(Ⅲ) and As(Ⅴ)[J].ACS Applied Materials & Interfaces,2015,7(35):19726-19735.
[16] Bilgin Simsek E.Solvothermal synthesized boron doped TiO2 catalysts:Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation[J].Applied Catalysis B:Environmental,2017,200:309-322.
[17] Sugranez R,Balbuena J,Cruz-Yusta M,et al.Efficient behaviour of hematite towards the photocatalytic degradation of NO gases[J].Applied Catalysis B:Environmental,2015,165:529-536.
[18] Maensiri S,Masingboon C,Promarak V,et al.Synthesis and optical properties of nanocrystalline V-doped ZnO powders[J].Optical Materials,2007,29(12):1700-1705.
[19] 毛娟,熊政伟,曹林洪.调控CNx薄膜的紫外-可见波段光学性能研究[J].真空科学与技术学报,2018,38(5):369-374.
[20] Xiang Q,Yu J,Wong P K.Quantitative characterization of hydroxyl radicals produced by various photocatalysts[J].Journal of Colloid and Interface Science,2011,357(1):163-167.
[1] 黄仕元, 王振宇, 李胜, 林森焕, 邓简, 李赢杰. 掺杂对BiFeO3材料磁性、光催化性能的影响[J]. 现代化工, 2021, 41(3): 48-52.
[2] 张帆, 赵瑞红, 王晓艳, 薛志伟, 王琳硕. 铟基MOFs制备及对废水中亚甲基兰吸附性能的研究[J]. 现代化工, 2021, 41(3): 196-201.
[3] 赵国庆, 袁钊, 王连, 郭卓. NiCoP/NSRGO复合材料的制备及其电催化性能研究[J]. 现代化工, 2021, 41(2): 155-160.
[4] 李从, 王瑶, 孙志超, 王安杰, 遇治权, 刘颖雅. AgI/MOF-253的制备及其可见光催化性能研究[J]. 现代化工, 2021, 41(1): 82-87.
[5] 李阳达, 李丹, 王丽萍. Ag掺杂三氧化钨的制备及其光催化降解甲苯性能研究[J]. 现代化工, 2021, 41(1): 93-98.
[6] 胡一博, 倪婉萍, 刘民, 郭新闻. 多级孔Fe/ZSM-5的制备及其亚甲基蓝降解性能研究[J]. 现代化工, 2021, 41(1): 195-200.
[7] 潘会, 胡轶, 胡帅帅. Fe、Ni掺杂ZnO纳米材料的光学、磁性及光催化性能的研究[J]. 现代化工, 2020, 40(7): 136-140.
[8] 廖磊, 秦霸, 吕承航, 黄维刚. 掺杂对多晶热电材料SnSe影响的研究进展[J]. 现代化工, 2020, 40(5): 52-55.
[9] 朱金玉, 刘清, 向明武, 郭俊明, 白红丽, 刘晓芳. Ni-Cu双掺LiMn2O4正极材料的制备及电化学性能研究[J]. 现代化工, 2020, 40(5): 104-108.
[10] 张晓婉, 李巧玲. 混合塑料与改性煤矸石模板制备多孔碳材料及其吸附性能的研究[J]. 现代化工, 2020, 40(5): 194-198.
[11] 时晓羽, 李会鹏, 赵华, 张杰. 硫掺杂高比表面积g-C3N4的制备及其光催化性能的研究[J]. 现代化工, 2020, 40(4): 167-172.
[12] 安亚苹, 刘淑芝, 张梅. 可充锌空气电池非贵金属阴极催化剂研究进展[J]. 现代化工, 2020, 40(3): 36-39.
[13] 李书典, 郑德山, 郭峰. 二氧化锰催化氧化性能的研究进展[J]. 现代化工, 2020, 40(3): 52-56.
[14] 张嘉烜, 赵宗彬, 孙洋, 王爽, 胡晓静, 邱介山. FeOOH/石墨烯复合气凝胶三维电极氧化脱除污水有机物的研究[J]. 现代化工, 2020, 40(3): 92-96,102.
[15] 郭田辉, 张守臣. 多形貌二氧化钛/石墨烯复合材料的制备及光催化性能研究[J]. 现代化工, 2020, 40(3): 172-175.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn