Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (3): 170-174    DOI: 10.16606/j.cnki.issn0253-4320.2021.03.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
电沉积CoCuP催化水氧化性能研究
陈俊池, 张培立
大连理工大学精细化工国家重点实验室, 辽宁 大连 116024
Electrodeposited CoCuP as efficient catalysts for oxidation of water
CHEN Jun-chi, ZHANG Pei-li
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
下载:  PDF (3391KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以铜片为基底,通过变电位沉积方法制备了CoP和CoCuP电极。在1 mol/L KOH中,CoCuP催化水氧化电流达到10 mA/cm2所需的过电势为238 mV,明显优于CoP催化剂。结果表明,铜掺杂能够调节电极表面形貌,CoCuP形成独特的纳米片层堆积结构,具有更高的电活性面积。此外,铜掺杂还能调节催化活性位点,CoCuP相对于RHE表现出pH依赖的OER活性,表明晶格氧作为催化活性位点参与了OER反应,进而提高了催化剂的OER活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈俊池
张培立
关键词:  水氧化  电催化水分解  过渡金属磷化物  电催化剂  电沉积    
Abstract: CoP and CoCuP electrodes are prepared through potentiodynamic deposition method with copper foil as substrates.CoCuP electrode exhibits an excellent activity toward oxidation of water in 1 M KOH with an overpotential of only 238 mV at a current density of 10 mA·cm-2,which is significantly better than CoP electrode.Systematic research shows that Cu doping into Co-P can adjust the surface morphology of the electrode.CoCuP forms a unique nano-sheet stacking structure with a higher electrochemically active surface area compared with CoP.In addition,CoCuP exhibits pH-dependent OER activity relative to RHE,indicating that the lattice oxygens participate in the OER reaction as active sites,which enhances the OER activity of the catalyst.
Key words:  oxidation of water    electrocatalytic water splitting    transition metal phosphides    electrocatalysts    electrodeposition
收稿日期:  2020-05-11      修回日期:  2021-01-19          
ZTFLH:  TQ151.1  
基金资助: 中央高校基本科研业务费专项资金资助(DUT17RC(3)083);生态化工重点实验室开放课题基金(STHG1801)
通讯作者:  张培立(1982-),男,博士,副教授,研究方向为电催化与电合成,通讯联系人,peilizhang@dlut.edu.cn。    E-mail:  peilizhang@dlut.edu.cn
作者简介:  陈俊池(1995-),女,硕士研究生,研究方向为电催化水氧化材料,chenjunchi@mail.dlut.edu.cn
引用本文:    
陈俊池, 张培立. 电沉积CoCuP催化水氧化性能研究[J]. 现代化工, 2021, 41(3): 170-174.
CHEN Jun-chi, ZHANG Pei-li. Electrodeposited CoCuP as efficient catalysts for oxidation of water. Modern Chemical Industry, 2021, 41(3): 170-174.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.03.034  或          https://www.xdhg.com.cn/CN/Y2021/V41/I3/170
[1] Ting Ouyang,Ye Yaqian,Wu Chunyan,et al.Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2 C nanoparticles as bifunctional electrodes for water splitting[J].Angewandte Chemie (International ed.in English),2019,58(15):4923-4928.
[2] Chen Pengzuo,Xu Kun,Fang Zhiwei,et al.Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J].Angewandte Chemie (International ed.in English),2015,54(49):14710-14714.
[3] Zhu M,Zhang Z,Zhang H,et al.Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution[J].J Colloid Interface Sci,2018,509:522-528.
[4] Guo P,Wu Y X,Lau W M,et al.CoS nanosheet arrays grown on nickel foam as an excellent OER catalyst[J].Journal of Alloys and Compounds,2017,723:772-778.
[5] Indra A,Menezes P W,Zaharieva I,et al.Detecting structural transformation of cobalt phosphonate to active bifunctional catalysts for electrochemical water-splitting[J].Journal of Materials Chemistry A,2020,8(5):2637-2643.
[6] Ji L,Wang J,Teng X,et al.CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting[J].ACS Catalysis,2019,10(1):412-419.
[7] Jiang N,You B,Sheng M,et al.Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting[J].Angew Chem Int Ed Engl,2015,54(21):6251-6254.
[8] Tang C,Cheng N,Pu Z,et al.NiSe nanowire film supported on nickel foam:An efficient and stable 3D bifunctional electrode for full water splitting[J].Angewandte Chemie International Edition,2015,54(32):9351-9355.
[9] Liang Z,Huang Z,Yuan H,et al.Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation[J].Chem Sci,2018,9(34):6961-6968.
[10] Yuan X,Ge H,Wang X,et al.Controlled phase evolution from Co nanochains to CoO nanocubes and their application as OER catalysts[J].ACS Energy Letters,2017,2(5):1208-1213.
[11] Zhan Y,Du G,Yang S,et al.Development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution[J].ACS Appl Mater Interfaces,2015,7(23):12930-12936.
[12] Xue Z H,Su H,Yu Q Y,et al.Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for Overall water splitting in wide pH range[J].Advanced Energy Materials,2017,7(12):1602355.
[13] Beltrán-Suito R,Menezes P W,Driess M.Amorphous outperforms crystalline nanomaterials:Surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting[J].Journal of Materials Chemistry A,2019,7:15749-15756.
[14] Ling T,Zhang T,Ge B,et al.Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction[J].Advanced Materials,2019,31:1807771.
[15] Dutta A,Samantara A K,Dutta S K,et al.Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious,durable,and efficient OER catalyst[J].ACS Energy Letters,2016,1(1):169-174.
[16] Fang M,Dong G,Wei R,et al.Hierarchical nanostructures:Design for sustainable water splitting[J].Advanced Energy Materials,2017,7(23):1700559.
[17] Joo J,Kim T,Lee J,et al.Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J].Adv Mater,2019,31(14):1806682.
[18] Zhang J,Zhang Q,Feng X.Support and interface effects in water-splitting electrocatalysts[J].Adv Mater,2019,31(31):1808167.
[19] Yan L,Zhang B,Zhu J,et al.Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting[J].Applied Catalysis B:Environmental,2020,265:118555.
[20] Tian Y,Cao L,Qin P.Bimetal-organic framework derived high-valence-state Cu-doped Co3O4 porous nanosheet arrays for efficient oxygen evolution and water splitting[J].Chem Cat Chem,2019,11(17):4420-4426.
[21] Zhang Q,Liu N,Guan J.Accelerative oxygen evolution by Cu-doping into Fe-Co oxides[J].Sustainable Energy & Fuels,2020,4(1):143-148.
[22] Meenakshi Chauhan,Kasala Prabhakar Reddy,Chinnakonda S Gopinath,et al.Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction[J].ACS Catal,2017,7(9):5871-5879.
[23] Chen L,Zhang H,Chen L,et al.Facile synthesis of Cu doped cobalt hydroxide (Cu-Co(OH)2) nano-sheets for efficient electrocatalytic oxygen evolution[J].Journal of Materials Chemistry A,2017,5(43):22568-22575.
[24] Zhang P,Li L,Nordlund D,et al.Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation[J].Nature Communications,2018,9(1):381.
[25] Koper M T M.Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J].Chemical Science,2013,4(7):2710.
[26] Grimaud A,Diaz-Morales O,Han B,et al.Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J].Nature Chemistry,2017,9(5):457-465.
[1] 李东, 高彩云. 高氧化效率的纳米WO3水氧化光阳极的制备及表征[J]. 现代化工, 2020, 40(3): 147-151.
[2] 秦浩, 朱天汉, 戴和坤, 宋华. Ni掺杂磷化钴催化剂的制备及其苯并呋喃加氢脱氧的性能[J]. 现代化工, 2020, 40(11): 194-199.
[3] 李莎莎, 李雯. 常温常压下氮气还原合成氨催化剂的研究进展[J]. 现代化工, 2019, 39(10): 46-50.
[4] 胡燕飞, 张荣荣, 周盼盼, 杨庆华. FeP@PC纳米材料的制备及其析氢反应性能探究[J]. 现代化工, 2019, 39(10): 111-115.
[5] 孟庆波, 齐海东, 卢帅, 郭昭, 杨海丽. 电沉积方式对镍-锡-锰合金镀层耐蚀性的影响[J]. 现代化工, 2018, 38(3): 101-104,106.
[6] 孟庆波, 齐海东, 卢帅, 郭昭, 杨海丽. pH对脉冲电沉积Ni-Sn-Mn镀层的影响[J]. 现代化工, 2018, 38(1): 72-75.
[7] 陈志新, 曾坚贤, 刘国清. 电沉积处理络合-超滤过程中含镍浓缩液[J]. 现代化工, 2017, 37(4): 92-95.
[8] 蒋春燕, 聂明, 田显辉, 李庆. 燃料电池氧还原电催化剂的研究进展[J]. 现代化工, 2016, 36(7): 17-20,22.
[9] 朱昱, 周燕琴, 魏金栋, 张宇, 倪红军. 直接乙醇燃料电池电催化剂研究进展[J]. 现代化工, 2016, 36(4): 18-22,24.
[10] 张洁, 王树众, 卢金玲, 陈森林, 李艳辉, 任萌萌. 高浓度印染废水及污泥的超临界水氧化系统设计及经济性分析[J]. 现代化工, 2016, 36(4): 154-158.
[11] 王慧斌, 廖传华, 陈海军, 朱跃钊. 超临界水氧化技术处理煤化工废水的试验研究[J]. 现代化工, 2016, 36(11): 154-158.
[12] 赵光明, 刘玉存, 柴涛, 王洪伟, 田江霞. 连续型超临界水氧化反应器中NaCl沉积现象与机理探讨[J]. 现代化工, 2015, 35(3): 147-151.
[13] 王红涛. 催化超临界水氧化处理焦化废水试验研究[J]. 现代化工, 2014, 34(4): 134-137.
[14] 高璟,刘有智,常凌飞. 超重力场中电化学沉积法制备材料的研究[J]. , 2011, 31(5): 0-0.
[15] 张淑平,赵彦,马杰,刘晓慧,王梦飞,刘伟. 层层自组装法修饰电极检测硫代胆碱的研究[J]. , 2011, 31(1): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn