Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (3): 21-25    DOI: 10.16606/j.cnki.issn0253-4320.2021.03.005
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
人工湿地与微生物燃料电池耦合系统的研究进展
王义安1,2, 王超1,2, 林华1,2, 张学洪1,2,3, Kong CHHUON4
1. 桂林理工大学环境科学与工程学院, 广西 桂林 541000;
2. 桂林理工大学岩溶地区水污染控制与用水安全保障协同创新中心, 广西 桂林 541004;
3. 桂林电子科技大学生命与环境科学学院, 广西 桂林 541000;
4. 柬埔寨技术研究所水文与水资源工程学院, 柬埔寨 金边 12000
Research progress on constructed wetland-microbial fuel cell coupling system
WANG Yi-an1,2, WANG Chao1,2, LIN Hua1,2, ZHANG Xue-hong1,2,3, KONG CHHUON4
1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China;
2. Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin University of Technology, Guilin 541004, China;
3. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541000, China;
4. Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh 12000, Cambodia
下载:  PDF (1499KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了近年来人工湿地与微生物燃料电池耦合系统在国内外的研究现状,总结了关于进水流动模式、水力停留时间HRT、电极材料、电极位置、湿地植物及微生物等条件对人工湿地微生物燃料电池治理污水能力和产电性能的影响,最后对其未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王义安
王超
林华
张学洪
Kong CHHUON
关键词:  人工湿地  微生物燃料电池  CW-MFC  水处理  产电    
Abstract: Global research status of constructed wetland-microbial fuel cell coupling system in recent years is reviewed.Effects of inlet water flow mode,hydraulic retention time,electrode materials,electrode location,wetland plants,and microorganisms on the sewage treatment capacity and power generation performance of the constructed wetland-microbial fuel cell are discussed.Future research direction is also prospected.
Key words:  constructed wetland    microbial fuel cell    water treatment    power generation
收稿日期:  2020-04-24      修回日期:  2021-01-10          
ZTFLH:  X703  
基金资助: 国家自然科学基金面上项目(52070051);广西科技计划项目澜沧江-湄公河水环境技术创新平台(2018AD16013-04);广西科技计划项目(桂科AD17195023,桂科2018AD16013);广西高等学校高水平创新团队及卓越学者计划项目(桂财教函[2018]319);广西八桂学者和特聘专家项目;广西环境污染控制理论与技术重点实验室科教结合科技创新基地
通讯作者:  林华(1984-),男,博士,副教授,研究方向为水污染控制,通讯联系人,linhua5894@163.com。    E-mail:  linhua5894@163.com
作者简介:  王义安(1996-),男,博士生,研究方向为水污染控制,873316639@qq.com
引用本文:    
王义安, 王超, 林华, 张学洪, Kong CHHUON. 人工湿地与微生物燃料电池耦合系统的研究进展[J]. 现代化工, 2021, 41(3): 21-25.
WANG Yi-an, WANG Chao, LIN Hua, ZHANG Xue-hong, KONG CHHUON. Research progress on constructed wetland-microbial fuel cell coupling system. Modern Chemical Industry, 2021, 41(3): 21-25.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.03.005  或          https://www.xdhg.com.cn/CN/Y2021/V41/I3/21
[1] Ong S A,Ho L N,Wong Y S,et al.Semi-batch operated constructed wetlands planted with phragmites australis for treatment of dyeing wastewater[J].Journal of Engineering Science and Technology,2011,6(5):619-627.
[2] 王洋洋,赵金辉,顾佳华,等.植物对人工湿地-微生物燃料电池耦合系统去污及产电性能的影响[J].现代化工,2020,40(4):65-68.
[3] 刘琪.人工湿地在污水深度处理中的应用研究[D].成都:西南交通大学,2019.
[4] You S H,Zhang X H,Liu J,et al.Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr,Cu and Ni from electroplating wastewater[J].Environ Technol,2014,35(1/2/3/4):187-194.
[5] 李文英,刘玉香,任瑞鹏,等.以PMS为阴极电子受体启动的微生物燃料电池产电及阳极微生物特性研究[J].现代化工,2019,39(9):63-66.
[6] 虞洋,胡淑恒,程建萍,等.共基质型微生物燃料电池降解偶氮染料与产电[J].环境工程学报,2017,11(8):4868-4873.
[7] 杨方.微生物燃料电池在多孔介质中处理重金属铬废水的研究[D].合肥:合肥工业大学,2013.
[8] 郭伟.微生物燃料电池产电性能及处理偶氮染料废水研究[D].新乡:河南师范大学,2014.
[9] Fang Z,Song H L,Yu R,et al.A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products[J].Ecological Engineering,2016,94:455-463.
[10] Xu L,Zhao Y Q,Wang X D,et al.Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process[J].Chemical Engineering Journal,2018,344:105-113.
[11] Oon Y L,Ong S A,Ho L N,et al.Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation[J].Bioresour Technol,2015,186:270-275.
[12] Liu S T,Song H L,Wei S Z,et al.Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-Microbial fuel cell systems[J].Bioresource Technology,2014,166:575-583.
[13] Corbella C,Puigagut J,Garfi M.Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells[J].Sci Total Environ,2017,584/585:355-362.
[14] Saz Ç,Ture C,Turker O C,et al.Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J].Environ Sci Pollut Res Int,2018,25(9):8777-8792.
[15] Zhou Y,Xu D,Xiao E R,et al.Relationship between electrogenic performance and physiological change of four wetland plants in constructed wetland-microbial fuel cells during non-growing seasons[J].Journal of Environmental Sciences,2018,70:54-62.
[16] Liu S T,Song H L,Li X N,et al.Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system[J].International Journal of Photoenergy,2013,2013:1-10.
[17] Oon Y L,Ong S A,Ho L N,et al.Up-flow constructed wetland-microbial fuel cell for azo dye,saline,nitrate remediation and bioelectricity generation:From waste to energy approach[J].Bioresource Technology,2018,266:97-108.
[18] Wang J F,Song X S,Wang Y H,et al.Bioelectricity generation,contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell[J].Bioresource Technology,2017,245:372-378.
[19] 郭伟,李怡帆,宋虹,等.共基质下微生物燃料电池同步脱色甲基橙与产电性能[J].环境工程学报,2015,9(3):1189-1193.
[20] Song H L,Li H,Zhang S,et al.Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:Effects of circuit operation mode and hydraulic retention time[J].Chemical Engineering Journal,2018,350:920-929.
[21] Fang Z,Cheng S C,Wang H,et al.Feasibility study of simultaneous azo dye decolorization and bioelectricity generation by microbial fuel cell-coupled constructed wetland:Substrate effects[J].RSC Advances,2017,7(27):16542-16552.
[22] Oon Y L,Ong S A,Ho L N,et al.Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery[J].Bioresour Technol,2016,203:190-197.
[23] 范智仁.人工湿地-微生物燃料电池去除罗丹明B染料[D].西安:长安大学,2017.
[24] Doherty L,Zhao Y Q.Operating a two-stage microbial fuel cell-constructed wetland for fuller wastewater treatment and more efficient electricity generation[J].Water Sci Technol,2015,72(3):421-428.
[25] Hartl M,Bedoya-Rios D F,Fernandez-Gatell M,et al.Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells[J].Science of The Total Environment,2019,652:1195-1208.
[26] Li H,Zhang S,Yang X L,et al.Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure[J].Chemosphere,2019,217:599-608.
[27] Srivastava P,Yadav A K,Mishra B K.The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland[J].Bioresour Technol,2015,195:223-230.
[28] Doherty L,Zhao Y Q,Zhao X H,et al.Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology[J].Chemical Engineering Journal,2015,266:74-81.
[29] Doherty L,Zhao X H,Zhao Y Q,et al.The effects of electrode spacing and flow direction on the performance of microbial fuel cell-constructed wetland[J].Ecological Engineering,2015,79:8-14.
[30] Wang X O,Tian Y M,Liu H,et al.Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems[J].Sci Total Environ,2019,653:860-871.
[31] Fang Z,Song H L,Cang N,et al.Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J].Biosensors and Bioelectronics,2015,68:135-141.
[32] Villaseñor Camacho J,Rodríguez Romero L,Fernández Marchante C M,et al.The salinity effects on the performance of a constructed wetland-microbial fuel cell[J].Ecological Engineering,2017,107:1-7.
[33] Xu L,Zhao Y Q,Fan C,et al.First study to explore the feasibility of applying microbial fuel cells into constructed wetlands for COD monitoring[J].Bioresour Technol,2017,243:846-854.
[1] 李维斌, 沈鑫, 胡瑞, 董颉, 李潜. 膜蒸馏在废水处理中的应用及膜污染控制进展[J]. 现代化工, 2021, 41(1): 19-23.
[2] 陈红芳, 王广智, 周思敏, 冯丽娜, 王东东, 胡磊. 改性沸石在污水处理工艺中的应用进展[J]. 现代化工, 2020, 40(S1): 59-63,70.
[3] 李玉娥, 王瑞波, 郭清霞, 徐晓军. PMS氧化-电絮凝处理含锰、锌、铁实际废水[J]. 现代化工, 2020, 40(S1): 216-219.
[4] 刘远峰, 张秀玲, 李从举. 微生物燃料电池技术及其应用研究进展[J]. 现代化工, 2020, 40(9): 20-24,29.
[5] 李铭全, 成少安. 空气阴极微生物燃料电池堆栈的工艺优化研究[J]. 现代化工, 2020, 40(8): 185-189.
[6] 王洋洋, 赵金辉, 顾佳华, 蒋浩然, 王臻, 赵涵. 植物对人工湿地-微生物燃料电池耦合系统去污及产电性能的影响[J]. 现代化工, 2020, 40(4): 65-68.
[7] 刘治界, 杨春鹏, 秦冰. 催化臭氧氧化与陶瓷膜耦合处理污水研究进展[J]. 现代化工, 2020, 40(4): 69-72.
[8] 顾佳华, 赵金辉, 王洋洋, 王臻, 蒋浩然, 赵涵. 人工湿地用于城市污水厂尾水深度处理及其脱氮效能强化研究[J]. 现代化工, 2020, 40(3): 64-66,71.
[9] 郭飞, 史宗阳, 罗惠芹. 沉积物微生物燃料电池的性能提升策略[J]. 现代化工, 2020, 40(11): 53-57.
[10] 王海涛, 奥德, 吕美婵, 刘亚攀, 常娜. 水性涂料生产废水的深度处理及资源化利用研究进展[J]. 现代化工, 2019, 39(S1): 45-48.
[11] 李文英, 刘玉香, 任瑞鹏, 李建会, 吕永康. 以PMS为阴极电子受体启动的微生物燃料电池产电及阳极微生物特性研究[J]. 现代化工, 2019, 39(9): 63-67.
[12] 李勇, 程治良, 全学军, 罗丹. 水力喷射空气旋流器吹脱处理挥发性有机物废水[J]. 现代化工, 2019, 39(9): 176-180.
[13] 王洪海, 韦晓晓, 薛璐璐, 王钊, 周琦, 李春利. 减压逆流多效精馏回收膜工业废水中的DMAC[J]. 现代化工, 2019, 39(8): 226-230,234.
[14] 徐成龙, 张家威, 张饮江. 微生物脱盐燃料电池MDCs存在的问题及其应用研究进展[J]. 现代化工, 2019, 39(8): 69-72.
[15] 曹隽, 庞一敏. 上海桃浦污水处理厂提标改造设计及运行效果分析[J]. 现代化工, 2019, 39(7): 180-182.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn