Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (2): 177-182    DOI: 10.16606/j.cnki.issn0253-4320.2021.02.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
纳米金负载两性粘胶纤维的制备及催化性能研究
张春晓, 唐逸飞
中国石油大学胜利学院, 山东 东营 257061
Preparation of gold nanoparticles-loaded amphoteric viscose fibers and study on their catalytic performance
ZHANG Chun-xiao, TANG Yi-fei
Shengli College, China University of Petroleum, Dongying 257061, China
下载:  PDF (3187KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以粘胶纤维为原料、氢氧化钠为催化剂、氯乙酸钠为改性试剂,制备了阴离子改性粘胶纤维。采用高压反应釜,在140℃水热环境下用超支化聚乙烯亚胺(HPEI)为大分子改性试剂,制备了HPEI接枝改性的两性粘胶纤维。以两性粘胶纤维为模板、氯金酸为金源、硼氢化钠为还原剂,制备了纳米金(AuNPs)负载两性粘胶纤维。利用IR、SEM、XPS对产品进行表征。结果表明,两性粘胶纤维制备成功,反应主要发生在纤维表面,纤维结构未发生改变;纳米金负载两性粘胶纤维表面氮元素和金元素明显增加。以纳米金负载两性粘胶纤维为催化剂,硼氢化钠还原对硝基苯酚溶液(6×10-2 mol/L)的降解率可达到99.97%,硼氢化钠还原次甲基蓝溶液(8×10-5 mol/L)的降解率可达到96.60%,同时可以加快降解速度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张春晓
唐逸飞
关键词:  粘胶纤维  两性  化学改性  纳米金  催化    
Abstract: Anionic modified viscose fiber is prepared from viscose fiber with sodium hydroxide as catalyst and sodium chloroacetate as modification reagent.Hyperbranched polyethylenimine (HPEI) grafted amphoteric viscose fibers are prepared from anionic viscose fiber by using HPEI as macromolecular modification reagent under a 140℃ hydrothermal environment in a high-pressure reactor.Nano gold (AuNPs) loaded amphoteric viscose fiber is prepared with HPEI grafted amphoteric viscose fiber as template,chlorauric acid as gold source and sodium borohydride as reducing agent.The products are characterized by IR,SEM and XPS.IR and SEM analysis shows that AuNPs loaded amphoteric viscose fiber is successfully prepared,and the reaction occurs mainly on the surface of the fiber while the fiber structure remains unchanged.XPS analysis shows that nitrogen and gold elements on the surface of AuNPs loaded amphoteric viscose fiber increase significantly.With AuNPs loaded amphoteric viscose fiber as catalyst,the reduction degradation rate of p-nitrophenol solution (6×10-2 mol·L-1) by sodium borohydride reaches 99.97% while the reduction degradation rate of methylene blue solution (8×10-5 mol·L-1) can reach 96.60% with an accelerated degradation reaction.
Key words:  viscose fiber    amphoteric    chemical modification    AuNPs    catalytic
收稿日期:  2020-04-10      修回日期:  2020-12-16           出版日期:  2021-02-20
ZTFLH:  TQ341  
  TB333  
基金资助: 中国石油大学胜利学院春晖科技计划项目(KY2018002)
通讯作者:  张春晓(1974-),男,博士,副教授,主要从事功能高分子合成及应用研究,通讯联系人,hangchx269@aliyun.com。    E-mail:  hangchx269@aliyun.com
引用本文:    
张春晓, 唐逸飞. 纳米金负载两性粘胶纤维的制备及催化性能研究[J]. 现代化工, 2021, 41(2): 177-182.
ZHANG Chun-xiao, TANG Yi-fei. Preparation of gold nanoparticles-loaded amphoteric viscose fibers and study on their catalytic performance. Modern Chemical Industry, 2021, 41(2): 177-182.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.02.034  或          https://www.xdhg.com.cn/CN/Y2021/V41/I2/177
[1] Wang W,Zhang P,Zhang S,et al.Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution[J].Carbohydrate Polymers,2013,98(1):1031-1038.
[2] Baksheev I P,Butyagin P A.World production of viscose fibres[J].Fibre Chemistry,1997,29(4):221-224.
[3] Li W B,Ke G Z,Li G W,et al.Study on the structure and properties of viscose/wool powder blended fibre[J].Fibres & Textiles in Eastern Europe,2015,23(1):26-29.
[4] Beronja J.Lyocell fibres-New generation of man-made cellulosic fibres[J].Tekstil,1996,45(7):361-366.
[5] Lipp-Symonowicz B,Sztajnowski S,Wojciechowska D.New commercial fibres called ‘Bamboo Fibres’-Their structure and properties[J].Fibres & Textiles in Eastern Europe,2011,19(1):18-23.
[6] Shen Q,Liu D S,Gao Y,et al.Surface properties of bamboo fiber and a comparison with cotton linter fibers[J].Colloids & Surfaces B Biointerfaces,2004,35(3-4):193-195.
[7] Perepelkin K E.Principles and methods of modification of fibres and fibre materials.A review[J].Fibre Chemistry,2005,37(2):123-140.
[8] Schimper C B,Ibanescu C,Bechtold T.Effect of alkali pre-treatment on hydrolysis of regenerated cellulose fibers (part 1:viscose) by cellulases[J].Cellulose,2009,16(6):1057-1068.
[9] Canché-Escamilla G,Pacheco-Catalán D E,Andrade-Canto S B.Modification of properties of rayon fibre by graft copolymerization with acrylic monomers[J].Journal of Materials Ence,2006,41(22):7296-7301.
[10] Perin Z,Maver U,Pivec T,et al.Novel cellulose based materials for safe and efficient wound treatment[J].Carbohydrate Polymers,2014,100:55-64.
[11] Wu Q H,Chen S X,Luo S.H,et al.Aminating modification of viscose fibers and their CO2 adsorption properties[J].Journal of Applied Polymer Science,2016,132:42840.
[12] Suteu D,Coseri S,Zaharia C,et al.Modified cellulose fibers as adsorbent for dye removal from aqueous environment[J].Desalination and Water Treatment,2017,90(SEP.):341-349.
[13] Wang Y,Yin F,Chen S,et al.Preparation of a thermosensitive fiber and its carbon dioxide adsorption/desorption properties[J].Reactive & Functional Polymers,2016,103:72-80.
[14] Zeng H H,Wang L,Zhang D,et al.Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent[J].Chemical Engineering Journal,2019,358:253-263.
[15] Bairagi N,Gulrajani M L,Deopura B L,et al.Dyeing of N-modified viscose rayon fibres with reactive dyes[J].Coloration Technology,2005,121(3):113-120.
[16] Emam H E,Mowafi S,Mashaly H M,et al.Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles[J].Carbohydrate Polymers,2014,110:148-155.
[17] Fras-Zemlji Ač2,Kokolj L,Vanja; AČU2 akara,et al.Antimicrobial and antioxidant properties of chitosan-based viscose fibres enzymatically functionalized with flavonoids[J].Textile Research Journal,2011,81(15):1532-1540.
[18] Akbari M,Dadadashian F,Kordestani S S,et al.Enzymatic modification of regenerated cellulosic fabrics to improve bacteria sorption properties[J].Journal of Biomedical Materials Research Part A,2013,101(6):1734-1742.
[19] Dall'Acqua L,Tonin C,Peila R,et al.Performances and properties of intrinsic conductive cellulose-polypyrrole textiles[J].Synthetic Metals,2004,146(2):213-221.
[20] Kim J S,Cho iU S,Ko Y G,et al.Study on characteristics of phosphates and transition-metal complexes synthesized onto viscose rayon felt for flame retardancy[J].Journal of Industrial and Engineering Chemistry,2002,8(3):218-224.
[21] Totolin V,Sarmadi M,Manolache S O,et al.Environmentally friendly flame-retardant materials produced by atmospheric pressure plasma modifications[J].Journal of Applied Polymer Science,2012,124(1):116-122.
[22] Bychkova E V,Panova L G.Structure and properties of fireproof viscose fibres modified with dimethyl methylphosphonate[J].Fibre Chemistry,2003,35(6):450-451.
[23] Biliuta G,Coseri S.Magnetic cellulosic materials based on TEMPO-oxidized viscose fibers[J].Cellulose,2016,23(6):3407-3415.
[24] Rehan M,Mowafi S,Abdelmoez Aly S,et al.Microwave-heating for in-situ Ag NPs preparation into viscose fibers[J].European Polymer Journal,2017,86:68-84.
[25] Zheng J,Song F,Wang X L,et al.In-situ synthesis,characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles[J].Cellulose,2014,21(4):3097-3105.
[26] Emam H E,El-Hawary N S,Ahmed H B.Green technology for durable finishing of viscose fibers via self-formation of AuNPs[J].International Journal of Biological Macromolecules,2017,96:697-705.
[1] 李鹏, 谢磊, 王彦娟, 张健, 周峰. Cu系催化剂制备及其催化醇脱氢反应进展[J]. 现代化工, 2021, 41(2): 75-80.
[2] 钱静玉, 刘明庆, 高宁, 范梦捷, 陈英文. 气凝胶材料在环境治理中的研究进展[J]. 现代化工, 2021, 41(2): 81-85.
[3] 骆艳芳, 潘玉福, 李呈呈, 吕慧芸, 高凯花, 那平. 镍元素对HKTS析氢电位的影响[J]. 现代化工, 2021, 41(2): 102-106.
[4] 郭炜, 王亚明, 蒋丽红, 郑燕娥, 刘壁莹. La3+/CNMS-SO3H固体酸的制备及其催化合成正龙脑的研究[J]. 现代化工, 2021, 41(2): 107-113,119.
[5] 王蕊, 韩培威, 吕洪侠, 李小刚, 马磊, 靳海波, 郭晓燕, 何广湘. 活性炭基材料催化湿式过氧化氢氧化降解间甲酚废水的研究[J]. 现代化工, 2021, 41(2): 124-129.
[6] 包璐瑀, 郭丽君, 张卫珂, 张艳荣. 模板法制备纳米洋葱碳/二氧化钛及其光催化性能研究[J]. 现代化工, 2021, 41(2): 140-145.
[7] 杨帆, 张玉黎, 肖睿. Mn、Ce助剂对Ni基催化剂甲烷化性能的影响[J]. 现代化工, 2021, 41(2): 161-165.
[8] 季雨晴, 傅敏, 杨凌, 任秋燕. 硅藻泥/TiO2/g-C3N4光催化涂料的制备及净化NO性能研究[J]. 现代化工, 2021, 41(2): 172-176,182.
[9] 余文卉, 王涛, 李谭香凝, 王雨婷, 胡兵. 新型磁性离子液体的萃取氧化脱硫研究[J]. 现代化工, 2021, 41(2): 188-192.
[10] 朱文德, 陈志东, 张静超, 赵海舰, 尤仁金, 刘田田, 赵贤广. Ag-Cu2O-沸石复合材料的制备及其光催化处理甲基橙废水的研究[J]. 现代化工, 2021, 41(2): 209-213.
[11] 黄锦玉, 孙波, 孙义高, 张印民, 丁大千, 张永锋. 镍系低温SCR脱硝催化剂载体与助剂的研究进展[J]. 现代化工, 2021, 41(1): 34-37.
[12] 陈明林, 孙利民, 黄庆东, 谢培思, 胡晓丽, 马好文. 碳四炔烃加氢技术发展现状及前景展望[J]. 现代化工, 2021, 41(1): 67-71.
[13] 李从, 王瑶, 孙志超, 王安杰, 遇治权, 刘颖雅. AgI/MOF-253的制备及其可见光催化性能研究[J]. 现代化工, 2021, 41(1): 82-87.
[14] 李阳达, 李丹, 王丽萍. Ag掺杂三氧化钨的制备及其光催化降解甲苯性能研究[J]. 现代化工, 2021, 41(1): 93-98.
[15] 吴承辉, 杜美利, 程序, 艾庆腾, 张悦, 林鹏程. Co、Mg改性USY对树皮煤热解焦油产物分布的影响[J]. 现代化工, 2021, 41(1): 108-112.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn