Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (2): 151-154,160    DOI: 10.16606/j.cnki.issn0253-4320.2021.02.029
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
N-对甲苯基丙烯酰胺和乙醇在多孔硅铝沸石上的高效迈克尔加成反应研究
吴蒙雨, 唐天地, 傅雯倩
常州大学石油化工学院, 江苏 常州 213164
High efficient Michael addition between N-p-tolyl acrylamide and ethanol over porous silicate-alumina zeolite
WU Meng-yu, TANG Tian-di, FU Wen-qian
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
下载:  PDF (1514KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以不同类型的酸性多孔沸石分子筛(ZSM-5、Beta、USY和MOR)为催化剂,在没有强碱添加剂的条件下实现N-对甲苯基丙烯酰胺和乙醇的迈克尔加成反应。利用X射线衍射、N2-物理吸附和NH3-程序升温脱附技术对沸石催化剂进行表征,并考察了不同类型的多孔沸石对反应活性和选择性的影响。结果表明,酸性多孔Beta沸石分子筛具有更好的催化活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴蒙雨
唐天地
傅雯倩
关键词:  多孔沸石  迈克尔加成反应  酰胺  乙醇    
Abstract: Michael addition reaction between N-p-tolyl acrylamide and ethanol is achieved over different acidic porous silicate-alumina zeolites (ZSM-5,Beta,USY and MOR) in the absence of any alkaline additives.These zeolite catalysts are characterized by X-ray diffraction,N2-physical absorption and temperature programed desorption of ammonia,and the influences of different zeolite catalysts on the reaction activity and product selectivity are investigated.Results show that acidic porous Beta zeolite has the highest catalytic activity among those.
Key words:  porous zeolite    Michael addition reaction    amide    ethanol
收稿日期:  2020-03-15      修回日期:  2020-12-15           出版日期:  2021-02-20
ZTFLH:  TQ246  
基金资助: 国家自然科学基金石油化工联合基金培育项目(U1662139)
通讯作者:  傅雯倩(1987-),女,博士,讲师,研究方向为多孔催化新材料的合成、开发与利用,通讯联系人,fuwenqian@cczu.edu.cn。    E-mail:  fuwenqian@cczu.edu.cn
作者简介:  吴蒙雨(1993-),女,硕士研究生,研究方向为非均相催化,594945280@qq.com
引用本文:    
吴蒙雨, 唐天地, 傅雯倩. N-对甲苯基丙烯酰胺和乙醇在多孔硅铝沸石上的高效迈克尔加成反应研究[J]. 现代化工, 2021, 41(2): 151-154,160.
WU Meng-yu, TANG Tian-di, FU Wen-qian. High efficient Michael addition between N-p-tolyl acrylamide and ethanol over porous silicate-alumina zeolite. Modern Chemical Industry, 2021, 41(2): 151-154,160.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.02.029  或          https://www.xdhg.com.cn/CN/Y2021/V41/I2/151
[1] Nising C F,Brase S.The oxa-Michael reaction:From recent developments to applications in natural product synthesis[J].Chemical Society Reviews,2008,37(6):1218-1228.
[2] Hintermann L.Recent developments in metal-catalyzed additions of oxygen nucleophiles to alkenes and alkynes[M].Berlin:Cx bond formation Springer,2010:123-155.
[3] Nising C F,Brase S.Recent developments in the field of oxa-Michael reactions[J].Chemical Society Reviews,2012,41(3):988-999.
[4] Liu Y,Lai Z,Yang P,et al.Thio-Michael addition of α,β-unsaturated amides catalyzed by Nmm-based ionic liquids[J].RSC Advances,2017,7(68):43104-43113.
[5] Guo S H,Xing S Z,Mao S,et al.Oxa-Michael addition promoted by the aqueous sodium carbonate[J].Tetrahedron Letters,2014,55(49):6718-6720.
[6] Firouzabadi H,Iranpoor N,Nowrouzi F.The facile and efficient Michael addition of indoles and pyrrole to α,β-unsaturated electron-deficient compounds catalyzed by aluminium dodecyl sulfate trihydrate[Al(DS)3]·3H2O in water[J].Chemical Communications,2005,(6):789-791.
[7] Kisanga P B,Ilankumaran P,Fetterly B M,et al.P(RNCH2CH2)3N:Efficient 1,4-addition catalysts[J].The Journal of Organic Chemistry,2002,67(11):3555-3560.
[8] Stewart I C,Bergman R G,Toste F D.Phosphine-catalyzed hydration and hydroalkoxylation of activated olefins:Use of a strong nucleophile to generate a strong base[J].Journal of the American Chemical Society,2003,125(29):8696-8697.
[9] Gu Q,Rong Z Q,Zheng C,et al.Desymmetrization of cyclohexadienones via Brønsted acid-catalyzed enantioselective oxo-Michael reaction[J].Journal of the American Chemical Society,2010,132(12):4056-4057.
[10] Firouzabadi H,Iranpoor N,Jafarpour M,et al.ZrOCl2·8H2O as a highly efficient and the moisture tolerant Lewis acid catalyst for Michael addition of amines and indoles to α,β-unsaturated ketones under solvent-free conditions[J].Journal of Molecular Catalysis A:Chemical,2006,252(1-2):150-155.
[11] Ishii T,Fujioka S,Sekiguchi Y,et al.A new class of chiral pyrrolidine-pyridine conjugate base catalysts for use in asymmetric Michael addition reactions[J].Journal of the American Chemical Society,2004,126(31):9558-9559.
[12] Hayashi Y,Gotoh H,Hayashi T,et al.Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes[J].Angewandte Chemie International Edition,2005,44(27):4212-4215.
[13] Christoffers J,Baro A.Construction of quaternary stereocenters:New perspectives through enantioselective Michael reactions[J].Angewandte Chemie International Edition,2003,42(15):1688-1690.
[14] Fuwa H,Noto K,Sasaki M.Stereoselective synthesis of substituted tetrahydropyrans via domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization[J].Organic Letters,2010,12(7):1636-1639.
[15] Xie J H,Guo L C,Yang X H,et al.Enantioselective synthesis of 2,6-cis-disubstituted tetrahydropyrans via a tandem catalytic asymmetric hydrogenation/oxa-Michael cyclization:An efficient approach to (-)-centrolobine[J].Organic Letters,2012,14(18):4758-4761.
[16] Wang F,Yang H,Fu H,et al.Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base[J].Chemical Communications,2013,49(5):517-519.
[17] 王春蓉.沸石分子筛的性能与应用研究[J].化学与粘合,2010,32(4):76-78.
[18] 李昆,程宏飞.沸石分子筛的合成及应用研究进展[J].中国非金属矿工业导刊,2019,136(3):1-6.
[19] 刑攸燕.新型固体酸催化剂的制备研究及其应用[D].济南:山东科技大学,2013.
[20] Stijn V,Jan G,Jacobs P A,et al.Recent advances in the catalytic conversion of cellulose[J].ChemCatChem,2011,3(1):82-94.
[21] Zhou C H,Xia X,Lin C X,et al.Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J].Chemical Society Reviews,2011,43(6):5588-5617.
[22] Huang Y B,Fu Y.Hydrolysis of cellulose to glucose by solid acid catalysts[J].Green Chemistry,2013,15(5):1095-1111.
[23] Fu W Q,Zhang L,Tang T D,et al.Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y[J].Journal of the American Chemical Society,2011,133(39):15346-15349.
[24] Fu W Q,Zhang L,Tang T D,et al.Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J].Journal of Catalysis,2015,330:423-433.
[25] Zhang L,Fu W Q,Tang T D,et al.Ni2P clusters on zeolite nanosheet assemblies with high activity and good stability in the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J].Journal of Catalysis,2016,338:210-221.
[1] 姜睿, 张伟, 周峰, 吴万春, 彭慧敏, 马会霞. 乙醇汽油政策下异丁烯利用途径分析[J]. 现代化工, 2021, 41(2): 1-5.
[2] 王红旺, 崔建国, 李红艳, 张峰, 王朝旭, 崔佳丽. K2FeO4-PAC-PAM处理地下水中高浓度硫酸盐的实验研究[J]. 现代化工, 2020, 40(S1): 138-142.
[3] 张海峰, 张敏. 不同煤气化技术合成气发酵法制乙醇的可行性探讨[J]. 现代化工, 2020, 40(S1): 279-283.
[4] 陶艳琪, 肖佩荣, 王琪. 油胺对乙醇脱氢硅酸铜催化剂性能的影响[J]. 现代化工, 2020, 40(9): 176-179.
[5] 韦贻春, 余会成, 石展望, 李浩, 雷福厚. 马来松香与双丙酮丙烯酰胺制备共聚膜的研究[J]. 现代化工, 2020, 40(7): 145-149.
[6] 陆雨, 严生虎, 张跃, 刘建武, 沈介发, 辜顺林, 马晓明, 陈代祥. 过氧化氢氧化β-巯基乙醇合成羟乙基磺酸的连续流工艺[J]. 现代化工, 2020, 40(7): 217-220,225.
[7] 周俊伟, 张雷, 郭林樵. 双效萃取精馏工艺制备无水乙醇的模拟与优化[J]. 现代化工, 2020, 40(7): 221-225.
[8] 靳国忠. 煤经乙醇制烯烃路线的竞争力分析[J]. 现代化工, 2020, 40(4): 1-4.
[9] 廖莎, 王鹏翔, 师文静, 孙启梅, 张霖, 彭绍忠. 莱茵衣藻黑暗厌氧发酵生产乙醇的研究[J]. 现代化工, 2020, 40(4): 188-192.
[10] 张锐标, 朱志华. 新型萃取剂回收DMF的模拟研究及经济分析[J]. 现代化工, 2020, 40(4): 218-221.
[11] 胡盛. 魔芋接枝丙烯酸-丙烯酰胺/高岭土复合材料的制备及其释药性能[J]. 现代化工, 2020, 40(2): 123-127.
[12] 徐万福, 赵莹, 唐智勇, 刘伟, 傅伟松, 余泽华. 合成氯乙烷新工艺的研究及其产业化[J]. 现代化工, 2020, 40(2): 215-218,221.
[13] 韩焕蓬, 姚斌, 武玉民, 冯维春, 舒永. 直接酰胺化催化合成色酚AS-PH的研究[J]. 现代化工, 2020, 40(11): 127-130,135.
[14] 李云, 张竞予, 陈金芳. 量子点废液轻组分的资源化利用[J]. 现代化工, 2020, 40(11): 182-185,189.
[15] 李国林, 罗丹, 孔岩, 范振兴, 刘志华. 生活垃圾制燃料乙醇市场前景及可行性分析[J]. 现代化工, 2020, 40(1): 14-18.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn