Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (2): 135-139,145    DOI: 10.16606/j.cnki.issn0253-4320.2021.02.026
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
二(2-乙基己基)磷酸酯协同二苯并-18-冠醚-6高效分离浓盐水中钙镁离子乳化液膜的研究
毛倩1, 于玉夺1, 李敏2, 葛文书1, 贺高红1,2, 张文君1
1. 大连理工大学化工学院, 辽宁 盘锦 124221;
2. 大连理工大学精细化工国家重点实验室, 辽宁 大连 116023
Study on efficient separation of calcium and magnesium in concentrated brine by emulsion liquid membrane with bis(2-ethylhexyl) phosphate and dibenzo-18-crown-6 as dual carriers
MAO Qian1, YU Yu-duo1, LI Min2, GE Wen-shu1, HE Gao-hong1,2, ZHANG Wen-jun1
1. School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China;
2. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
下载:  PDF (1955KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对现有钙镁离子较低的分离选择性,以双载体乳化液膜为分离钙镁离子的介质,二(2-乙基己基)磷酸酯(D2EHPA)和二苯并-18-冠醚-6(DB18C6)为金属离子运输的双载体,草酸钠(Na2C2O4)为内相萃取剂,利用载体的高结合能力和独特结构实现钙离子的高选择性分离,并间接得到高浓度镁离子的外水相浓盐水。结果表明,两载体的协同作用有效促进了钙离子的萃取,30 min内钙离子萃取率达99%以上,钙离子的协萃因子为11.54,而镁离子协萃因子仅0.58,且外水相镁离子摩尔比由75.81%变为99.74%。同时,该双载体乳化液膜在分离过程中展现出良好的稳定性,破乳率不超过2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛倩
于玉夺
李敏
葛文书
贺高红
张文君
关键词:  乳化液膜  双载体  钙镁离子分离  协同萃取  稳定性    
Abstract: In view of current technology's low separation selectivity between calcium and magnesium,a dual-carrier emulsion is proposed for the separation of magnesium from calcium in solution.Taking bis(2-ethylhexyl) phosphate and dibenzo-18-crown-6 as two carriers for transportation of metal ions,sodium oxalate as internal extractant,calcium ion is selectively and efficiently separated by relying on strong chemical combination ability and unique structure of carriers,meanwhile the external solution with high concentrated of magnesium ion is indirectly obtained.It is shown from results that synergistic effect between two carriers promotes the extraction of calcium ions effectively.Within 30 minutes,the extraction ratio of calcium ions achieves 99%,with synergistic extraction factors of 11.54 and 0.58 for Ca2+ and Mg2+ respectively,while the content of magnesium ion in the external solution increases from 75.81% to 99.74%.This dual-carrier emulsion liquid membrane also shows good stability during the separation,with the demulsification ratio of less than 2%.
Key words:  emulsion liquid membrane    dual carriers    separation of calcium and magnesium ions    synergistic extraction    stability
收稿日期:  2020-04-10      修回日期:  2020-12-08           出版日期:  2021-02-20
ZTFLH:  TQ028.8  
  X703  
基金资助: 国家重大科研仪器研制项目(21527812);大连理工大学基本科研业务费(DUT20LK43)
通讯作者:  张文君(1982-),女,博士,讲师,硕士生导师,研究方向为液膜分离技术和应用,通讯联系人,wenjunzhang@dlut.edu.cn。    E-mail:  wenjunzhang@dlut.edu.cn
作者简介:  毛倩(1994-),女,硕士研究生,研究方向为液膜分离技术和应用,1696042302@qq.com
引用本文:    
毛倩, 于玉夺, 李敏, 葛文书, 贺高红, 张文君. 二(2-乙基己基)磷酸酯协同二苯并-18-冠醚-6高效分离浓盐水中钙镁离子乳化液膜的研究[J]. 现代化工, 2021, 41(2): 135-139,145.
MAO Qian, YU Yu-duo, LI Min, GE Wen-shu, HE Gao-hong, ZHANG Wen-jun. Study on efficient separation of calcium and magnesium in concentrated brine by emulsion liquid membrane with bis(2-ethylhexyl) phosphate and dibenzo-18-crown-6 as dual carriers. Modern Chemical Industry, 2021, 41(2): 135-139,145.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.02.026  或          https://www.xdhg.com.cn/CN/Y2021/V41/I2/135
[1] Shahabi M P,MuHugh A,Anda M,et al.A framework for planning sustainable seawater desalination water supply[J].Science of the Total Environment,2017,575:826-835.
[2] Jiménez H M A,Santos G L D L,Carbajal D S,et al.Alternatives for vacuum generation in unconventional seawater desalination systems[J].Desalination and Water Treatment,2016,57:27085-27095.
[3] Belkin N,Rahav E,Elifantz H,et al.The effect of coagulants and antiscalants discharged with seawater desalination brines on coastal microbial communities:A laboratory and in situ study from the southeastern Mediterranean[J].Water Research,2017,110:321-331.
[4] Ge Q C,Yang L M,Cai J Z,et al.Hydroacid magnetic nanoparticles in forward osmosis for seawater desalination and efficient regeneration via integrated magnetic and membrane separations[J].Journal of Membrane Science,2016,520:550-559.
[5] 黄鹏飞,刘南希,王锐浩,等.环渤海地区海水淡化发展研究[J].环境科学与管理,2019,44(12):40-44.
[6] Fernández-Torquemada Y,Carratalá A,Sánchez Lizaso J L.Impact of brine on the marine environment and how it can be reduced[J].Desalination and Water Treatment,2019,167:27-37.
[7] Herrero-Gonzalez M,Admon N,Dominguez-Ramos A,et al.Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electrodialysis with bipolar membranes[J].Environmental Science and Pollution Research,2020,27(2):1256-1266.
[8] Jones E,Qadir M,van Vliet M T H,et al.The state of desalination and brine production:A global outlook[J].Science of The Total Environment,2019,657:1343-1356.
[9] Reig M,Casas S,Valderrama C,et al.Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines:Production of strong acid and base[J].Desalination,2016,398:87-97.
[10] 肖燕飞,黄小卫,冯宗玉,等.镁盐浸出离子吸附型稀土矿的环境影响评价及展望[J].中国稀土学报,2015,33(1):1-9.
[11] 范宇睿,吴灵珠,蔡依辛,等.二甲基二烯丙基氯化铵-镁盐改性甘蔗渣对染料废水脱色研究[J].农业环境科学学报,2016,35(8):1580-1586.
[12] Dong Z L,Zhang Y S,Cai R H.Study on calcium and magnesium removal from salt type brine by sodium hydroxide and sodium carbonate for salt water production by nanofiltration[J].Journal of Salt and Chemical Industry,2013,42(3):48-52.
[13] Qin C H,Wang R,Ma W.Characteristics of calcium adsorption by Ca-Selectivity zeolite in fixed-pH and in a range of pH[J].Chemical Engineering Journal,2010,156:540-545.
[14] Herce-Sesa B,López-López J A,Moreno C.Ionic liquid solvent bar micro-extraction of CdCln(n-2)-species for ultra-trace Cd determination in seawater[J].Chemosphere,2018,193:306-312.
[15] Katsuta S,Saito Y,Takahashi S.Application of a lithium-ion selective metallacrown to extraction-spectrophotometric determination of lithium in saline water[J].Anal Sci,2018,34(2):189-193.
[16] Foster J T T,Hu Y,Boyer T H.Affinity of potassium-form cation exchange resin for alkaline earth and transition metals[J].Separation and Purification Technology,2017,175:229-237.
[17] Eyupoglu V,Kumbasar R A.Extraction of Ni(Ⅱ) from spent Cr-Ni electroplating bath solutions using LIX 63 and 2BDA as carriers by emulsion liquid membrane technique[J].Journal of Industrial & Engineering Chemistry,2015,21:303-310.
[18] Sulaiman R N R,Othman N,Amin N A S.Emulsion liquid membrane stability in the extraction of ionized nanosilver from wash water[J].Journal of Industrial & Engineering Chemistry,2014,20(5):3243-3250.
[19] Avinash B.Lende M K D V,Kulkarni P D M A.Emulsion ionic liquid membranes (EILMs) for removal of Pb(Ⅱ) from aqueous solutions[J].RSC Adv,2014,4:52316-52323.
[20] Hussein M A,Mohammed A A,Atiya M A.Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment:An overview[J].Environmental science and pollution research international,2019,26(36):36184-36204.
[21] Albaraka Z.Carrier-mediated liquid membrane systems for lead(Ⅱ) ion separations[J].Chemical Papers,2020,74(1):77-88.
[22] Xie F,Wang W.Recovery of copper and cyanide from waste cyanide solutions using emulsion liquid membrane with LIX 7950 as the carrier[J].Environ Technol,2016,38(15):1961-1968.
[23] Ferreira L C,Cardoso V L,Filho U C.Mn(Ⅱ) removal from water using emulsion liquid membrane composed of chelating agents and biosurfactant produced in loco[J].Journal of Water Process Engineering,2019,29:100792-100799.
[24] Norela J,Norul Fatiha Mohamed N,Norasikin O.Extraction and recovery optimization of succinic acid using green emulsion liquid membrane containing palm oil as the diluent[J].Environmental Progress & Sustainable Energy,2018,38(3):13065-13074.
[25] Kumar A,Thakur A,Panesar P S.A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams[J].Reviews in Environmental Science and Bio/Technology,2019,18:153-182.
[1] 郭炜, 王亚明, 蒋丽红, 郑燕娥, 刘壁莹. La3+/CNMS-SO3H固体酸的制备及其催化合成正龙脑的研究[J]. 现代化工, 2021, 41(2): 107-113,119.
[2] 王刚, 邱俊彬, 朱佳平, 谭华, 侯兆凯. 两亲性SiO2/APTES/PFOA纳米颗粒的制备及其界面性能研究[J]. 现代化工, 2020, 40(S1): 88-91.
[3] 孙欣欣. 助剂W改性α-氧化铝载体对乙烯环氧化银催化剂性能的影响[J]. 现代化工, 2020, 40(7): 175-179.
[4] 刘杰梅, 王宁, 宋亚伟, 杨亚帅, 杨宾. 赤藻糖醇基相变材料热性能的实验研究[J]. 现代化工, 2020, 40(6): 66-71.
[5] 常小虎, 赵毅, 郝芸, 徐梦瑶, 姚丽蓉. 纳米流体在原油加热系统中的定量实验研究[J]. 现代化工, 2020, 40(6): 160-164.
[6] 潘一, 马迪, 张金辉, 廖松泽, Regina Rassadkina, 杨洋. 聚合物稳泡剂泡沫驱中耐温性研究进展[J]. 现代化工, 2020, 40(2): 41-47.
[7] 丘德立, 陈东, 郑宝成. Si@PNC复合材料应用于高性能锂离子电池的研究[J]. 现代化工, 2020, 40(2): 114-117.
[8] 杨欢, 陕绍云, 支云飞, 赵辉, 余毓兰, 顾学荣, 陈庆琳. 2D MOF纳米片的制备及其应用的研究进展[J]. 现代化工, 2020, 40(12): 39-44.
[9] 李锐, 王立达, 孙文, 舒向泉, 贺永鹏, 刘贵昌. 超疏水不锈钢网的制备及其雾水收集性能研究[J]. 现代化工, 2020, 40(11): 92-97.
[10] 郭东红, 沈文敏, 杨晓鹏, 孙建峰, 李睿博, 崔晓东. 耐酸耐高温泡沫剂的研制及在超稠油蒸汽吞吐上的应用[J]. 现代化工, 2020, 40(10): 175-177.
[11] 陈婧妍, 忽小宇, 吕晓霞, 袁宁一, 丁建宁, 刘振. 基于表面处理的富锂锰基正极材料的研究[J]. 现代化工, 2020, 40(1): 174-179.
[12] 张雨晨, 邓官垒, 齐学礼, 刘振, 张连成, 郑钦臻, 闫克平. 高温DBD系统的研制及其放电特性研究[J]. 现代化工, 2020, 40(1): 198-201,206.
[13] 屈亚松, 俞小花, 谢刚, 史春阳, 杨亚刚. 锌酸钙和锌铝水滑石的制备及其在锌镍电池中的应用研究[J]. 现代化工, 2019, 39(8): 138-142.
[14] 张喜宝, 陈小雯, 丁鹏, 汪恒, 廖德康, 胡程程, 李晓斌, 陈祥迎. 乙酰丙酮钙/锌复合材料的控制合成及其在PVC热稳定性能中的应用[J]. 现代化工, 2019, 39(8): 152-156.
[15] 王勤, 赵青, 吴荣生, 陶新明, 张宸. Cu基和Pd基甲醇水蒸气重整制氢催化剂研究进展[J]. 现代化工, 2019, 39(6): 50-53.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn