Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (2): 28-32,37    DOI: 10.16606/j.cnki.issn0253-4320.2021.02.006
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
木质纤维生物质热解及中间产物缩合机理研究进展
程毅, 屈一新, 庄抗, 王际东
北京化工大学化学工程学院, 北京 100029
Research progress on mechanism of lignocellulose pyrolysis and intermediates condensation
CHENG Yi, QU Yi-xin, ZHUANG Kang, WANG Ji-dong
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
下载:  PDF (1684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 系统地介绍了木质纤维生物质中纤维素、半纤维素和木质素的热解机理,分析了生物质热解产生的中间产物,并讨论了中间产物的再缩合过程。纤维素、半纤维素和木质素热解后可以得到合成气、脂肪族含氧化合物、呋喃类化合物和芳香族化合物等。除合成气外,其余几种产物之间和自身都可能发生缩合,产生化学性质十分稳定的缩合产物。最后,基于中间产物缩合抑制策略,对提高生物质热解效率进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程毅
屈一新
庄抗
王际东
关键词:  木质纤维素  热解  反应机理  中间产物缩合    
Abstract: Pyrolysis mechanisms of cellulose,hemicellulose and lignin in lignocellulose are introduced systemically.The intermediates generated from lignocellulose pyrolysis are analyzed and the re-condensation processes of the intermediates are discussed.Syngas,aliphatic oxides,furan derivative oxides and aromatic compounds can be obtained from pyrolysis of lignocellulose.In addition to syngas,each intermediate may condense with each other and themselves to generate stable condensation products.Based on the condensation inhibition of intermediate products,improvement strategies of biomass pyrolysis are prospected.
Key words:  lignocellulose    pyrolysis    reaction mechanism    intermediates condensation
收稿日期:  2020-04-12      修回日期:  2020-12-03           出版日期:  2021-02-20
ZTFLH:  TQ352.6  
基金资助: 国家重点研发计划资助项目(2019YFB1503904)
通讯作者:  王际东(1963-),男,博士,副教授,研究方向为能源催化反应工程,通讯联系人,jidongwang1963@163.com。    E-mail:  jidongwang1963@163.com
作者简介:  程毅(1989-),男,博士,研究方向为生物质能源及化学品
引用本文:    
程毅, 屈一新, 庄抗, 王际东. 木质纤维生物质热解及中间产物缩合机理研究进展[J]. 现代化工, 2021, 41(2): 28-32,37.
CHENG Yi, QU Yi-xin, ZHUANG Kang, WANG Ji-dong. Research progress on mechanism of lignocellulose pyrolysis and intermediates condensation. Modern Chemical Industry, 2021, 41(2): 28-32,37.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.02.006  或          https://www.xdhg.com.cn/CN/Y2021/V41/I2/28
[1] Ragauskas A J,Williams C K,Davison B H,et al.The path forward for biofuels and biomaterials[J].Science,2006,311(5760):484-489.
[2] 宋艳苹.生物质发电技术经济分析[D].郑州:河南农业大学,2010.
[3] 黄鹏,张文超,姚靖靖,等.生物质催化裂解选择性制备化学品的研究进展[J].现代化工,2017,37(6):53-59.
[4] Pinkert A,Marsh K N,Pang S,et al.Ionic liquids and their interaction with cellulose[J].Chemical Reviews,2009,109(12):6712-6728.
[5] Doblin M S,Kurek I,Jacob-Wilk D,et al.Cellulose biosynthesis in plants:From genes to rosettes[J].Plant & Cell Physiology,2002,43(12):1407-1420.
[6] 冷尔唯,龚勋,张扬,等.纤维素热解机理研究进展:以中间态纤维素为核心的纤维素演变[J].化工学报,2018,69(1):239-248.
[7] Lin Y C,Cho J,Tompsett G A,et al.Kinetics and mechanism of cellulose pyrolysis[J].Journal of Physical Chemistry C,2009,113(46):20097-20107.
[8] Shen D K,Gu S.The mechanism for thermal decomposition of cellulose and its main products[J].Bioresource Technology,2009,100(24):6496-6504.
[9] Patil S K R,Lund C R F.Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural[J].Energy & Fuels,2011,25(10):4745-4755.
[10] 许凤,孙润仓,詹怀宇.非木材半纤维素研究的新进展[J].中国造纸学报,2003,18(1):145-151.
[11] Pauly M,Gille S,Liu L,et al.Hemicellulose biosynthesis[J].Planta,2013,238(4):627-642.
[12] MãKi-Arvela P,Salmi T,Holmbom B,et al.Synthesis of sugars by hydrolysis of hemicelluloses-A review[J].Chemical Reviews,2011,111(9):5638-5666.
[13] Zhou X,Li W,Mabon R,et al.A critical review on hemicellulose pyrolysis[J].Energy Technology,2017,5(1):52-79.
[14] Cristescu C,Karlsson O.Changes in content of furfurals and phenols in self-bonded laminated boards[J].Bioresources,2013,8(3):4056-4071.
[15] Boerjan W,Ralph J,Baucher M.Lignin biosynthesis[J].Annual Review of Plant Biology,2003,54(1):519-546.
[16] Zakzeski J,Bruijnincx P C,Jongerius A L,et al.The catalytic valorization of lignin for the production of renewable chemicals[J].Chemical Reviews,2010,110(6):3552-3599.
[17] Hu Z,Foston M B,Ragauskas A J.Biomass characterization of morphological portions of alamo switchgrass[J].Journal of Agricultural and Food Chemistry,2011,59(14):7765-7772.
[18] Chakar F S,Ragauskas A J,Abaecherli A,et al.Review of current and future softwood kraft lignin process chemistry[J].Industrial Crops and Products,2004,20(2):131-141.
[19] 文甲龙.生物质木质素结构解析及其预处理解离机制研究[D].北京:北京林业大学,2014.
[20] Kosa M,Ben H X,Theliander H,et al.Pyrolysis oils from CO2 precipitated Kraft lignin[J].Green Chemistry,2011,13(11):3196-3202.
[21] Westerhof R J M,Brilman D W F,Garcia-Perez M,et al.Fractional condensation of biomass pyrolysis vapors[J].Energy & Fuels,2011,25(4):1817-1829.
[22] Tejado A,Pena C,Labidi J,et al.Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis[J].Bioresource Technology,2007,98(8):1655-1663.
[23] Parthasarathi R,Romero R A,Redondo A,et al.Theoretical study of the remarkably diverse linkages in lignin[J].Journal of Physical Chemistry Letters,2015,2(20):2660-2666.
[24] Nakamura T,Kawamoto H,Saka S.Condensation reactions of some lignin related compounds at relatively low pyrolysis temperature[J].Journal of Wood Chemistry and Technology,2007,27(2):121-133.
[25] Yu H,Hu J,Fan J,et al.One-Pot Conversion of sugars and lignin in ionic liquid and recycling of ionic liquid[J].Industrial & Engineering Chemistry Research,2015,51(8):3452-3457.
[26] Deuss P J,Scott M,Tran F,et al.Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin[J].Journal of the American Chemical Society,2015,137(23):7456-7467.
[27] Huang X M,Korányi T I,Boot M D,et al.Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J].Green Chemistry,2015,17(11):4941-4950.
[28] Shuai L,Amiri M T,Questell-Santiago Y M,et al.Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J].Science,2016,354(6310):329-333.
[29] Qi S,Hayashi J,Kudo S,et al.Catalytic hydrogenolysis of kraft lignin to monomers at high yield in alkaline water[J].Green Chemistry,2017,19:2636-2645.
[1] 吴承辉, 杜美利, 程序, 艾庆腾, 张悦, 林鹏程. Co、Mg改性USY对树皮煤热解焦油产物分布的影响[J]. 现代化工, 2021, 41(1): 108-112.
[2] 张佳, 王刚, 朱哲, 梅渝, 夏志伏, 张浩杰. 水热法和热解法处理Zn、Pb污染石榴的研究[J]. 现代化工, 2021, 41(1): 133-137.
[3] 尹力, 陈镐, 余飞, 周邵萍, 葛晓陵. 超细煤颗粒热加工特性的实验分析[J]. 现代化工, 2020, 40(S1): 124-127.
[4] 庞赟佶, 李港辉, 陈义胜, 卢春晓. 两种碱金属催化松木屑热裂解的实验研究[J]. 现代化工, 2020, 40(S1): 128-131,137.
[5] 曾鑫, 张静, 张永发, 安英保, 郑琪. 高温、高压、快速加氢热解煤残渣的结构和CO2气化反应性研究[J]. 现代化工, 2020, 40(9): 116-120,125.
[6] 周昭志, 池涌, 汤元君, 胡俊鹏, 董隽. 钙基添加剂对生活垃圾热解过程含氯污染物排放的影响[J]. 现代化工, 2020, 40(9): 121-125.
[7] 黄宏, 窦文渊, 陈飞龙, 侯军沛, 杨嘉慧, 陆金丹, 陈泽雄, 周志洪. 热解析-气相色谱法同时测定工作场所空气中4种丁醇异构体的方法研究[J]. 现代化工, 2020, 40(7): 235-239.
[8] 方书起, 蒋璐瑶, 李攀, 白净, 常春. 预处理生物质催化热解制取生物油的研究进展[J]. 现代化工, 2020, 40(4): 41-45,50.
[9] 于锦昭, 柯昌美, 杨金堂, 柯海波, 刘毅. 酚醛树脂为碳源制备铅碳电池负极材料的研究[J]. 现代化工, 2020, 40(4): 148-152.
[10] 刘雯雯, 郑永杰, 田景芝, 荆涛, 柳峰, 曹向宇. 污泥基活性炭负载金属催化剂对市政污泥低温热解特性的研究[J]. 现代化工, 2020, 40(3): 137-142.
[11] 马园园, 李锦涛, 刘小静, 牛宏伟, 潘维成, 廉红蕾. CO2/CO甲烷化催化剂及其反应机理研究进展[J]. 现代化工, 2020, 40(10): 30-34,39.
[12] 李琴, 邓波, 蒲凯伦, 陈振. 基于AHP-模糊综合评价法的含油钻屑锤磨式热解析处理系统经济性评价研究[J]. 现代化工, 2019, 39(S1): 177-183.
[13] 司马国宝, 王帅, 崔莹, 黄健, 甘林火. 低共熔溶剂对木质纤维素分离及木质素提取的研究进展[J]. 现代化工, 2019, 39(9): 26-30.
[14] 周于翔, 杨飞霞, 杨双霞, 冯洪庆, 陈雷, 张晓东. 多级结构Ni-Zn纳米棒催化稻壳热解制备高品质合成气[J]. 现代化工, 2019, 39(8): 157-161.
[15] 刘雯雯, 郑永杰, 田景芝, 荆涛, 秦海洋. 铜系催化剂对市政污泥热解特性的影响[J]. 现代化工, 2019, 39(7): 133-137,139.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn