Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (2): 23-27    DOI: 10.16606/j.cnki.issn0253-4320.2021.02.005
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
氢气制取技术应用现状及发展趋势分析
王涵, 李世安, 杨发财, 杨国刚
大连海事大学轮机工程学院, 辽宁 大连 116026
Application status and development trend analysis of hydrogen production technologies
WANG Han, LI Shi-an, YANG Fa-cai, YANG Guo-gang
Marine Engineering College, Dalian Maritime University, Dalian 116026, China
下载:  PDF (1455KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了各类氢气制取技术及当前的应用现状,包括以天然气为主的传统化石燃料制氢和以核能、可再生能源为主的新型制氢技术,并综合考虑制氢技术的CO2排放量、制氢效率及经济成本,阐述了各类制氢技术的优势及现存问题。最后指出利用核能的热化学循环制氢符合可持续发展要求,有望替代传统制氢成为工业大规模制氢的主流技术;基于风电和光伏发电的可再生能源制氢技术具有清洁环保、零碳排放的优势,未来将会成为小规模制氢的重要补充。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王涵
李世安
杨发财
杨国刚
关键词:  氢能  制氢技术  可持续发展  发展趋势    
Abstract: Various hydrogen production technologies and their current applications are introduced,including traditional hydrogen production from fossil fuels based on natural gas,and new hydrogen production technologies based on nuclear energy and renewable energy.Considering CO2 emission,hydrogen production efficiency and economic cost of hydrogen production technology,the advantages and existing problems of various hydrogen production technologies are described.It is concluded that the thermochemical hydrogen production technologe using nuclear energy meets the requirements of sustainable development and is expected to replace traditional hydrogen production routes as the mainstream technology for large-scale industrial hydrogen production;the renewable energy-route hydrogen production technologies based on wind power and photovoltaic power generation have the advantages of clean,environmental friendliness and zero carbon emission,and will become an important supplement for small-scale hydrogen production in the future.
Key words:  hydrogen energy    hydrogen production technology    sustainable development    development trend
收稿日期:  2020-04-13      修回日期:  2020-12-01           出版日期:  2021-02-20
ZTFLH:  TQ116.2  
基金资助: 国家自然科学基金项目(51779025)
通讯作者:  杨国刚(1972-),男,博士,教授,博士生导师,研究方向为船舶新能源基础理论与应用技术,通讯联系人,yanggg@dlmu.edu.cn。    E-mail:  yanggg@dlmu.edu.cn
作者简介:  王涵(1996-),男,硕士生
引用本文:    
王涵, 李世安, 杨发财, 杨国刚. 氢气制取技术应用现状及发展趋势分析[J]. 现代化工, 2021, 41(2): 23-27.
WANG Han, LI Shi-an, YANG Fa-cai, YANG Guo-gang. Application status and development trend analysis of hydrogen production technologies. Modern Chemical Industry, 2021, 41(2): 23-27.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.02.005  或          https://www.xdhg.com.cn/CN/Y2021/V41/I2/23
[1] 刘坚,钟财富.我国氢能发展现状与前景展望[J].中国能源,2019,41(2):32-36.
[2] Nikolaidis P,Poullikkas A.A comparative overview of hydrogen production processes[J].Renewable and Sustainable Energy Reviews,2017,67:597-611.
[3] 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(4):469-477.
[4] Liu D,Sun Y,Li Y,et al.Perturbation of formate pathway and NADH pathway acting on the biohydrogen production[J].Scientific Reports,2017,7(1):9587-9594.
[5] Bhandari R,Trudewind C A,Zapp P.Life cycle assessment of hydrogen production via electrolysis-A review[J].Journal of Cleaner Production,2014,85:151-163.
[6] 刘涛,余钟亮,李光,等.化学链制氢技术的研究进展与展望[J].应用化工,2017,6(11):2215-2222.
[7] Siriwardane R,Tian H,Fisher J.Production of pure hydrogen and synthesis gas with Cu-Fe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming[J].International Journal of Hydrogen Energy,2015,40(4):1698-1708.
[8] Hou L,Yu Q,Wang K,et al.Oxidation kinetics of YBaCo4O7+δ and substituted oxygen carriers[J].Royal Society Open Science,2018,5(6):180150.
[9] Wang Z,Li L,Zhang G.Life cycle greenhouse gas assessment of hydrogen production via chemical looping combustion thermally coupled steam reforming[J].Journal of Cleaner Production,2018,179:335-346.
[10] 张平,徐景明,石磊,等.中国高温气冷堆制氢发展战略研究[J].中国工程科学,2019,21(1):20-28.
[11] Jaszczur M,Rosen M A,Sliwa T,et al.Hydrogen production using high temperature nuclear reactors:Efficiency analysis of a combined cycle[J].International Journal of Hydrogen Energy,2016,41:7861-7871.
[12] 张平,于波,陈靖,等.热化学循环分解水制氢研究进展[J].化学进展,2005,(4):643-650.
[13] 张耀,应芝,文振中,等.硫碘循环制氢中Bunsen反应新方法的研究进展[J].应用化学,2018,35(4):394-400.
[14] Giraldi M R François J,Castro-Uriegas D.Life cycle greenhouse gases emission analysis of hydrogen production from S-I thermochemical process coupled to a high temperature nuclear reactor[J].International Journal of Hydrogen Energy,2012,37(19):13933-13942.
[15] Wu W,Hsu F T,Chen H Y.Design and energy evaluation of a stand-alone copper-chlorine (Cu-Cl) thermochemical cycle system for trigeneration of electricity,hydrogen,and oxygen[J].International Journal of Energy Research,2018,42(2):830-842.
[16] Orhan M F,Dincer I,Naterer G F.Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production[J].International Journal of Hydrogen Energy,2008,33(21):6006-6020.
[17] 孔令国.风光氢综合能源系统优化配置与协调控制策略研究[D].北京:华北电力大学,2017.
[18] Qolipour M,Mostafaeipour A,Tousi O M.Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production:A case study[J].Renewable and Sustainable Energy Reviews,2017,78:113-123.
[19] Ghandehariun S,Kumar A.Life cycle assessment of wind-based hydrogen production in Western Canada[J].International Journal of Hydrogen Energy,2016,41(22):9696-9704.
[20] 刘金亚,张华,雷明镜,等.太阳能光伏电解水制氢的实验研究[J].可再生能源,2014,(11):1603-1608.
[21] Yilanci A,Dincer I,Ozturk H K.A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications[J].Progress in Energy and Combustion Science,2009,35(3):231-244.
[22] Jia J,Seitz L C,Benck J D,et al.Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%[J].Nature Communications,2016,7:13237-13242.
[23] Puig-Arnavat M,Bruno J C,Coronas A.Review and analysis of biomass gasification models[J].Renewable and Sustainable Energy Reviews,2010,14(9):2841-2851.
[24] Susmozas A,Iribarren D,Dufour J.Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production[J].International Journal of Hydrogen Energy,2013,38(24):9961-9972.
[25] Hajjaji N,Martinez S,Trably E,et al.Life cycle assessment of hydrogen production from biogas reforming[J].International Journal of Hydrogen Energy,2016,41(14):6064-6075.
[26] Lei Y,Bin Y,Peng J.Economic analysis of hydrogen production from steam reforming process[J].Energy Sources,Part B:Economics,Planning,and Policy,2017,12(12):1074-1079.
[1] 宋鹏飞, 单彤文, 李又武, 侯建国, 王秀林. 以天然气为原料的燃料电池分布式供能技术路径研究[J]. 现代化工, 2020, 40(9): 14-19.
[2] 程海涛, 申献双. 2020年第十九届日本绿色和可持续发展化学奖获奖项目评述[J]. 现代化工, 2020, 40(11): 1-6.
[3] 宋鹏飞, 单彤文, 李又武, 侯建国, 王秀林. 氢气与二氧化碳甲烷化在现代能源体系中的新应用[J]. 现代化工, 2020, 40(10): 4-9.
[4] 单彤文, 宋鹏飞, 李又武, 侯建国, 王秀林, 张丹. 国际氢供应链与氢贸易的储运技术支撑[J]. 现代化工, 2020, 40(1): 8-13.
[5] 徐成龙, 张家威, 张饮江. 利于可持续发展的农村水污染调查与治理对策研究——以沪、苏、鄂、皖典型农村为例[J]. 现代化工, 2019, 39(S1): 15-20.
[6] 彭俊杰, 周佳盈, 张丙青. Ni2P催化剂的合成及其电解水制氢性能研究[J]. 现代化工, 2019, 39(8): 134-137.
[7] 王军. 国内裂解C5产业链发展现状及趋势[J]. 现代化工, 2019, 39(8): 1-6.
[8] 陈锡荣. 中国石化产业发展趋势研究[J]. 现代化工, 2019, 39(6): 1-5.
[9] 王军. 国内裂解C9综合利用生产现状及发展趋势[J]. 现代化工, 2019, 39(4): 1-5.
[10] 宋倩倩, 王红秋, 李锦山. 原油生产化工品技术发展现状与趋势[J]. 现代化工, 2019, 39(2): 7-10.
[11] 程海涛, 申献双. 2019年第十八届日本绿色和可持续发展化学奖获奖项目评述[J]. 现代化工, 2019, 39(12): 1-6.
[12] 王江涛, 杨璐. 氢能产业与LNG接收站联合发展技术分析[J]. 现代化工, 2019, 39(11): 5-11.
[13] 桑军, 孙洋洲, 郭廓. 国内碳排放政策浅析及对策探讨[J]. 现代化工, 2018, 38(4): 5-7.
[14] 杜晓燕, 黄玥诚, 张浩, 朱庆明. 化工行业氨泄漏处置技术现状及发展趋势[J]. 现代化工, 2018, 38(2): 6-10.
[15] 程海涛, 申献双. 2018年第十七届日本绿色和可持续发展化学奖获奖项目评述[J]. 现代化工, 2018, 38(12): 10-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn