Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (1): 210-214    DOI: 10.16606/j.cnki.issn0253-4320.2021.01.042
  工业技术 本期目录 | 过刊浏览 | 高级检索 |
低能耗碳捕集技术及燃煤机组热经济性研究
赵红涛1,2, 王树民1, 张曼3
1. 国家能源投资集团有限责任公司, 北京 100011;
2. 中国神华煤制油化工有限公司, 北京 100011;
3. 华北科技学院化学与环境工程学院, 河北 廊坊 065201
Research on low energy consumption CO2 capture technology and thermal economy of coal-fired units
ZHAO Hong-tao1,2, WANG Shu-min1, ZHANG Man3
1. China Energy Investment Corporation, Beijing 100011, China;
2. China Shenhua Coal to Liquid and Chemical Co., Ltd., Beijing 100011, China;
3. School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang 065201, China
下载:  PDF (2214KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对燃烧后胺法脱碳工艺捕集能耗高的问题,在普通碳捕集系统中集成级间冷却、机械蒸气再压缩(mechanical vapor recompression,MVR)和富液分流解析3项节能技术,建立低能耗碳捕集系统,并将该系统与600 MW燃煤机组热力系统耦合,分析该系统对燃煤机组热经济性指标的影响。结果表明,当CO2捕集率为90%时,该碳捕集系统中单位再生能耗从4.09 GJ/t CO2降低到2.64 GJ/t CO2,降幅达35.28%。与耦合普通碳捕集系统的燃煤机组相比,耦合低能耗碳捕集系统燃煤机组的电厂效率从30.81%增加到33.53%,提升了2.72%;标准煤耗从398.87 g/kWh降低到366.81 g/kWh,下降了32.06 g/kWh;热耗率从11 674.92 kJ/kWh降低到10 736.53 kJ/kWh,减少了938.36 kJ/kWh,热经济性得到明显改善。研究还发现,CO2捕集率每降低1%,低能耗碳捕集燃煤机组的电厂效率增加0.054%,标准煤耗降低0.524 g/kWh,热耗率降低15.353 kJ/kWh,降低碳捕集率可进一步改善电厂的热经济性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵红涛
王树民
张曼
关键词:  燃煤烟气  CO2  再生能耗  节能  热经济性    
Abstract: Aiming to solve the problem that the regeneration of post-combustion amine decarburization process consumes high energy,a low energy consumption CO2 capture system is established through integrating three energy-saving technologies in the common CO2 capture system,including inter-stage cooling,mechanical vapor recompression and rich liquid split desorption.This system is then coupled with the thermodynamic system of a 600 MW coal-fired unit,and the impact on the thermal economic indicators of the coal-fired unit is analyzed.Results show that as CO2 capture ratio is 90%,the energy consumption per unit of CO2 regeneration in this system drops from 4.09 GJ/t CO2 to 2.64 GJ/t CO2,a decrease of 35.28%.Compared with a coal-fired unit coupled with the common carbon capture system,the power plant efficiency of a coal-fired unit coupled with this low energy consumption carbon capture system increases from 30.81% to 33.53%,an increase of 2.72 percentage;the standard coal consumption decreases from 398.87 g/kWh to 366.81 g/kWh,a decrease of 32.06 g/kWh;the heat consumption rate decreases from 11,674.92 kJ/kWh to 10 736.53 kJ/kWh,a decrease of 938.36 kJ/kWh,and the thermal economy has significantly been improved.It is found that as CO2 capture ratio decreases by every 1%,the power plant efficiency of the low energy consumption carbon capture coal-fired units will increase by 0.054%,the standard coal consumption will decrease by 0.524 g/kWh,and the heat consumption rate will decline by 15.353 kJ/kWh.Reducing CO2 capture ratio can further improve the thermal economy of power plants.
Key words:  coal-fired flue gas    CO2    regeneration energy consumption    energy saving    thermal economy
收稿日期:  2020-03-19      修回日期:  2020-11-18          
ZTFLH:  TQ110.9  
基金资助: 国家重点研发计划项目(2017YFB0603300);廊坊市科学技术研究与发展计划项目(2020011011)
通讯作者:  王树民(1962-),男,博士,教授级高级工程师,主要从事电力生产技术管理、燃煤电站污染物控制及CO2减排技术,通讯联系人,20031438@chnenergy.com.cn。    E-mail:  20031438@chnenergy.com.cn
作者简介:  赵红涛(1985-),男,博士,工程师,研究方向为燃煤电厂CO2减排与煤炭清洁转化,zhaohongtaoipe@163.com
引用本文:    
赵红涛, 王树民, 张曼. 低能耗碳捕集技术及燃煤机组热经济性研究[J]. 现代化工, 2021, 41(1): 210-214.
ZHAO Hong-tao, WANG Shu-min, ZHANG Man. Research on low energy consumption CO2 capture technology and thermal economy of coal-fired units. Modern Chemical Industry, 2021, 41(1): 210-214.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.01.042  或          https://www.xdhg.com.cn/CN/Y2021/V41/I1/210
[1] Hemmati,Abbas,Hamed Rashidi.Optimization of industrial intercooled post-combustion CO2 absorber by applying rate-base model and response surface methodology (RSM)[J].Process Safety and Environmental Protection,2019,121:77-86.
[2] Bao W,Zhao H,Li H,et al.Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure[J].Journal of CO2 Utilization,2017,17:125-136.
[3] Rolfe,Angela.Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture:Techno-economic and environmental evaluation[J].Applied Energy,2018,222:169-179.
[4] 沈超,李瑶瑶,刘颖颖,等.DMBA-DEEA-水三元吸收剂的CO2吸收解吸特性[J].现代化工,2017,37(6):141-145.
[5] Wang S,Yan S,Ma X,et al.Recent advances in capture of carbon dioxide using alkali-metal-based oxides[J].Energy & Environmental Science,2011,4(10):3805-3819.
[6] 陆诗建,黄凤敏,李清方,等.燃烧后CO2捕集技术与工程进展[J].现代化工,2015,35(6):48-52.
[7] 林海周,裴爱国,方梦祥.燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J].化工进展,2018,37(12):4874-4886.
[8] Wang T,He H,Yu W,et al.Process simulations of CO2 desorption in the interaction between the novel direct steam stripping process and solvents[J].Energy & Fuels,2017,31(4):4255-4262.
[9] Xu G,Hu Y,Tang B,et al.Integration of the steam cycle and CO2 capture process in a decarbonization power plant[J].Applied Thermal Engineering,2014,73(1):277-286.
[10] 黄斌,许世森,郜时旺,等.燃煤电厂CO2捕集系统的技术与经济分析[J].动力工程,2009,29(9):864-867.
[11] 韩中合,王营营,王继选,等.碳捕集系统与燃煤机组热力系统耦合的热经济性分析[J].化工进展,2014,33(6):1616-1623.
[12] Plaza J M,Van Wagener D,Rochelle G T.Modeling CO2 capture with aqueous monoethanolamine[J].Energy Procedia,2009,1(1):1171-1178.
[13] Xue B,Yu Y,Chen J,et al.A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations[J].International Journal of Coal Science & Technology,2017,4(1):15-24.
[14] Zhao B,Liu F,Cui Z,et al.Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant:Process improvement[J].Applied Energy,2017,185:362-375.
[15] Hu Y,Xu G,Xu C,et al.Thermodynamic analysis and techno-economic evaluation of an integrated natural gas combined cycle (NGCC) power plant with post-combustion CO2 capture[J].Applied Thermal Engineering,2017,111:308-316.
[16] Xu C,Xu G,Zhu M,et al.Thermodynamic analysis and economic evaluation of a 1000 MW bituminous coal fired power plant incorporating low-temperature pre-drying (LTPD)[J].Applied Thermal Engineering,2016,96:613-622.
[17] 韩中合,王营营,周权,等.燃煤电厂与醇胺法碳捕集系统耦合方案的改进及经济性分析[J].煤炭学报,2015,40(S1):222-229.
[18] 杨作梁,温新宇,李永玲.火电厂安全经济运行与管理[M].北京:化学工艺出版社,2013.
[1] 李鑫, 王永洪, 张新儒, 凌军. 分子量和NaY添加量对炭分子筛膜CO2分离性能的影响[J]. 现代化工, 2020, 40(S1): 159-165.
[2] 杨万典, 王佳兵, 刘勇军, 陶荣, 李晓翔. 粗吡啶精制吡啶系列产品节能型工艺技术研发[J]. 现代化工, 2020, 40(S1): 264-268,271.
[3] 牛建杰, 刘琦, 彭勃. 油藏地质封存中CO2生物转化CH4的资源化利用技术研究现状[J]. 现代化工, 2020, 40(9): 30-34,40.
[4] 曾鑫, 张静, 张永发, 安英保, 郑琪. 高温、高压、快速加氢热解煤残渣的结构和CO2气化反应性研究[J]. 现代化工, 2020, 40(9): 116-120,125.
[5] 郝增华, 张海静, 刘旭日, 连一苇. 热耦萃取精馏分离应用于甲醇-四氢呋喃体系的优化设计分析[J]. 现代化工, 2020, 40(9): 194-197.
[6] 郭亚伟, 杨国栋, 冯涛, 马鑫, 喻红艳. 利用CO2开发干热岩地热资源的分析[J]. 现代化工, 2020, 40(8): 15-20.
[7] 岑昊, 叶青, 樊玉锋, 陈丽娟, 张皓翔, 王乃根. 塔釜闪蒸热泵辅助反应精馏生产丙酸丙酯新工艺[J]. 现代化工, 2020, 40(8): 190-193,197.
[8] 蒋洪, 胡成星. 基于RSV流程的富气乙烷回收工艺改进[J]. 现代化工, 2020, 40(7): 206-210,216.
[9] 温雅琼, 黄钰洁, 邢宝岩, 王玉珍. 超级电容器用花状NiCo2S4纳米材料制备及其电化学性能研究[J]. 现代化工, 2020, 40(6): 103-106,113.
[10] 冯超, 王瑜, 孔令镕, 岳昌盛, 王志乔, 姚德俊, 常腾腾. 超临界CO2萃取修复污染土壤的发展与展望[J]. 现代化工, 2020, 40(5): 23-27,31.
[11] 刘松泽, 魏建光, 周晓峰, 李江涛, 周润楠, 陈映赫. 超临界CO2在页岩气开发中的应用研究进展[J]. 现代化工, 2020, 40(5): 28-31.
[12] 郜瑞东. 废竹木制备多孔材料及其性能研究[J]. 现代化工, 2020, 40(5): 109-112,116.
[13] 林祥钦, 王圆圆, 孙丹凤, 杨峰, 潘会会, 郭爱军. 混合碳四催化异构丁烯提浓工艺研究[J]. 现代化工, 2020, 40(5): 211-213.
[14] 高晓新, 王天宇, 陈梦圆, 李涛, 杨德明. 常规变压精馏和变压热集成精馏分离乙腈和水的模拟[J]. 现代化工, 2020, 40(5): 219-222,226.
[15] 蒋秀龙, 周铁桩, 王慧, 黄帅. MTO催化剂旋转闪蒸干燥及节能技术的开发及工业应用[J]. 现代化工, 2020, 40(4): 208-211.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn