Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2021, Vol. 41 Issue (1): 103-107,112    DOI: 10.16606/j.cnki.issn0253-4320.2021.01.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
硅铝酸盐分子筛对HCl电子气体的深度除水性能研究
叶向荣1,2, 张广第1, 叶素芳3, 夏添1, 周井森1, 张云峰1, 廖进1, 刘俊明1
1. 浙江博瑞电子科技有限公司, 浙江 衢州 324004;
2. 浙江师范大学先进催化材料教育部重点实验室, 浙江 金华 321004;
3. 金华职业技术学院, 浙江 金华 321007
Deep dehydration of electronic grade HCl gas by aluminosilicate molecular sieves
YE Xiang-rong1,2, ZHANG Guang-di1, YE Su-fang3, XIA Tian1, ZHOU Jing-sen1, ZHANG Yun-feng1, LIAO Jin1, LIU Jun-ming1
1. Zhejiang Britech Co., Ltd., Quzhou 324004, China;
2. Key Laboratory for Advanced Catalysis Materials of The Ministry of Education, Zhejiang Normal University, Jinhua 321004, China;
3. Jinhua Polytechnic, Jinhua 321007, China
下载:  PDF (1641KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 耐HCl和水协同腐蚀、低二次杂质释出是吸附材料用于HCl电子气体深度除水的先决条件。在考察了一系列工业化硅铝酸盐分子筛的耐蚀性、杂质释出和真实HCl电子气体环境下的深度除水性能后证实,硅铝酸盐分子筛的耐蚀性和除水性能与硅铝摩尔比(SiO2/Al2O3摩尔比)密切相关。硅铝摩尔比为2的分子筛耐蚀性较差,硅铝摩尔比为16~360的分子筛均具有较好的耐蚀性;硅铝摩尔比介于2~300之间的分子筛可将HCl电子气体中约2 μL/L水分脱除至130~200 nL/L,除水效率与速度均随硅铝摩尔比增加呈下降趋势。根据上述规律开发的MS-1分子筛可脱除HCl电子气体中的水分至约160 nL/L,MS-1分子筛经改性后则可将水分除至<100 nL/L,且对HCl中的金属离子无显著影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶向荣
张广第
叶素芳
夏添
周井森
张云峰
廖进
刘俊明
关键词:  氯化氢  电子气体  硅铝酸盐  分子筛  深度除水    
Abstract: High resistance to synergistic corrosion of HCl and moisture as well as negligible emission of secondary impurities are essential properties for a qualified adsorbent to dehydrate deeply HCl electronic gas,considering the fact that HCl is highly hydrophilic,and could be triggered to be strongly corrosive and reactive.Herein a number of commercial aluminosilicate molecular sieves are investigated regarding their corrosion resistance,impurity release and deep dehydration performance for real HCl electronic gas.Results indicate that both corrosion-resistance and dehydrating performance of aluminosilicate molecular sieves are closely tied to their silica to alumina (SiO2/Al2O3) ratios.A ratio of 2 results in poor corrosion resistance whilst those of 16-360 enable excellent corrosion-resistance.Molecular sieves with 2-300 of SiO2/Al2O3 ratio can reduce around 2 μL·L-1 of moisture in HCl electronic gas down to 130-200 nL·L-1 level.Both the dehydrating efficiency and speed exhibits a downward trend along with the increase of SiO2/Al2O3 ratio.Accordingly,MS-1 molecular sieve and its modified version have been developed which are capable of removing the moisture in HCl electronic gas down to around 160 and less than 100 nL·L-1,respectively,without significant contribution to metal impurities in HCl.
Key words:  hydrogen chloride    electronic gas    aluminosilicate    molecular sieve    deep dehydration
收稿日期:  2020-03-13      修回日期:  2020-11-22          
ZTFLH:  TQ117  
基金资助: 国家重点研发计划课题(2017YFB04055801)
通讯作者:  叶向荣(1968-),男,博士,教授,主要从事电子化学材料、新能源材料研究,通讯联系人,daniel_ye@grandit.com.cn。    E-mail:  daniel_ye@grandit.com.cn
引用本文:    
叶向荣, 张广第, 叶素芳, 夏添, 周井森, 张云峰, 廖进, 刘俊明. 硅铝酸盐分子筛对HCl电子气体的深度除水性能研究[J]. 现代化工, 2021, 41(1): 103-107,112.
YE Xiang-rong, ZHANG Guang-di, YE Su-fang, XIA Tian, ZHOU Jing-sen, ZHANG Yun-feng, LIAO Jin, LIU Jun-ming. Deep dehydration of electronic grade HCl gas by aluminosilicate molecular sieves. Modern Chemical Industry, 2021, 41(1): 103-107,112.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2021.01.021  或          https://www.xdhg.com.cn/CN/Y2021/V41/I1/103
[1] Choi S R.Method for cleaning electronic device and substrate using a laser and vapor phase cleaning compound:KR 2002000197A[P].2002-01-05.
[2] Choi S R.Method for cleaning electronic device and substrate using laser and HCl annealing:KR 2002000193A[P].2002-01-05.
[3] 丁波,李轶,陈翰,等.带氯化氢清洗功能的低压化学气相沉积设备:CN 104498903A[P].2015-04-08.
[4] Hirasawa T.Formation of patterns and electron beam drawing apparatus:JP,07297098A[P].1995-11-10.
[5] O'Donnell R,Goldspring G J.Techniques for etching a transition metal-containing layers in manufacture of electronic devices:WO,9933086A1[P].1999-12-19.
[6] Brabant P D,Jacobson P,Weeks K D.Purifier for chemical reactor in integrated-circuit fabrication:US 20060211248A1[P].2006-09-21.
[7] Nakamura M,Kijima T,Makihara K,et al.Removing of water from gases:EP 662339A2[P].1995-09-01.
[8] SEMI Standard C 3.35-1101.Specification for hydrogen chloride (HCl),99.997% Quality[S].San Jose:SEMI,2015-05-19.
[9] 孙福楠,于大秋,任越,等.中国气体的现状与发展[J].低温与特气,2014,32(6):1-6.
[10] Zhang J R.Manufacturing process of electronic grade hydrogen chloride,high-tech market seminar of specialty chemicals for electronic[M].Beijing:Electronics Materials Industry Association,2004:83-90.
[11] Cowles D,Raynor M W,Geiger W M.GC/MS,GC/AED,and GC-ICP-MS analysis of electronic specialty gases[C].Geiger W M,Raynor M W.Trace Analysis of Specialty and Electronic Gases.Hoboken,New Jersey:John Wiley & Sons,Inc,2013:151-194.
[12] Raynor M W,Bertness K A,Cossel K C,et al.Trace water vapor analysis in specialty gases:Sensor and spectroscopic approaches[C].Geiger W M,Raynor M W.Trace Analysis of Specialty and Electronic Gases.Hoboken,New Jersey:John Wiley & Sons,Inc,2013:195-249.
[13] Whitlock W H,Ezell E F,Hwang S C.High purity gases:Kirk-Othmer Separation Technology[M].(2nd Edition),Hoboken,New Jersey:John Wiley & Sons,Inc,2008:285-299.
[14] 叶向荣,陈刚,周黎旸.电子气体净化器现状与趋势[J].低温与特气,2015,33(2):1-6.
[15] 叶向荣,刘华平,黄明星,等.HCl电子气体超纯纯化技术研究[J].低温与特气,2019,37(1):34-39.
[16] 叶向荣,刘华平,黄明星,等.基于表面官能团反应的HCl电子气体深度除水研究[J].低温与特气,2020,38(2):1-10.
[17] Roy B,Rieth R,Nine R.Analytical methodology for evaluating purifiers containing a novel purification medium for hydrogen chloride gas[J].Gases & Instrumentation,2009,1:8-13.
[18] Pall Premium Process.Gas purification solutions[DB/OL].[2019-12-20].https://microelectronics.pall.com/en/semiconductor/process-gas-purification.html.
[19] Bowling for contaminants:The new science of gas purification[DB/OL].[2019-12-20].https://info.entegris.com/white-paper-bowling-for-contaminants?utm_campaign=Gas%20Purity&utm_source=entegris_website&utm_medium=campaign_page&utm_content=whitepaper.
[20] Specialty gases,gas detection,purification and control equipment[DB/OL].[2019-12-20].http://www.mathesongas.com/catalog/category.aspx?category_id=15&mode=EDGE.
[21] Ultra high purity gas purification[DB/OL].[2019-12-20].http://www.nupure.com/Pages/ultrapure.htm.
[22] High purity filters[DB/OL].[2019-12-20].http://www.mottcorp.com/media/high-purity-media.cfm.
[23] Neumann E,Himmler W,Buettner W,et al.Procedure for the purification of corrosive gases:DE,10115345A1[P].2002-05-04.
[24] Itabashi K,Igawa K.Purification method of acid gas:JPS 6154235A[P].1986-03-18.
[25] Pereira S C,Shogren P K,Gipson R D.High purity gas purifier:WO 2015161245A1[P].2015-10-22.
[26] Bhadha P M,Watanabe T,Fraenkel D.Methods for removal of impurity metals from gases using low metal zeolites:WO 0176723A1[P].2001-10-18.
[27] Fraenkel D,Funke H H,Cooper G.Methods for removal of water from gases using superheated zeolites:WO 2000020101A1[P].2000-04-13.
[28] Alvarez D,Spiegelman J J.Methods for water removal from corrosive gas streams:US 5910292A[P].1999-06-08.
[29] 中华人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会.GB/T 14602-2014,电子工业用气体氯化氢[S].北京:中国标准出版社,2014-12-22.
[1] 陈庭胜, 杜朕屹. 多级孔ZSM-5分子筛催化异丙基苯酚脱烷基反应研究[J]. 现代化工, 2020, 40(S1): 92-97.
[2] 李同辉, 左轶, 杨丽倩, 刘民, 郭新闻. 干胶转化法制备大孔/微孔复合钛硅分子筛[J]. 现代化工, 2020, 40(S1): 111-116.
[3] 李鑫, 王永洪, 张新儒, 凌军. 分子量和NaY添加量对炭分子筛膜CO2分离性能的影响[J]. 现代化工, 2020, 40(S1): 159-165.
[4] 吕存彬, 刘清华, 李闯, 郭志远, 王永杰, 项玉芝. 不同银引入方式的多级孔分子筛的制备及表征[J]. 现代化工, 2020, 40(S1): 190-194.
[5] 訾仲岳, 李建青, 刘广波, 吴晋沪. Ni-HZSM-5分子筛用于不同烯烃原料齐聚反应性能的研究[J]. 现代化工, 2020, 40(9): 66-69.
[6] 齐美美, 李孝国, 常洋, 赵成浩, 张安峰, 侯章贵, 郭新闻. 核壳结构Pt@ZSM-5@S-1分子筛用于甲苯甲醇烷基化制对二甲苯的研究[J]. 现代化工, 2020, 40(9): 131-135,141.
[7] 黄金花, 杨丙星, 叶丽萍. 组分含量对MnO2-CuO/Y常温催化臭氧氧化甲苯性能的影响[J]. 现代化工, 2020, 40(8): 129-133,138.
[8] 纪帅, 杨长龙, 李智芳, 李海瑞. 铜基微孔分子筛型脱硝催化剂的研究进展[J]. 现代化工, 2020, 40(7): 25-29.
[9] 胡晨晖, 刘春红, 胡达清, 蒋楠, 卓佐西, 范海东. 国六标准下柴油车尾气处理应对及分子筛SCR脱硝技术进展[J]. 现代化工, 2020, 40(6): 24-28.
[10] 郭磊, 朱伟平, 李飞, 郭智慧, 薛云鹏. 分子筛微观形貌调控合成研究进展[J]. 现代化工, 2020, 40(6): 38-41,46.
[11] 刘华, 王辉, 邢爱华, 程继红. 分子筛酸中心调控及影响研究进展[J]. 现代化工, 2020, 40(6): 47-50,56.
[12] 郭宇, 苗世举, 吴红梅, 肖昱. NH2-MCM-41吸附剂的制备及其对铬离子(Ⅵ)吸附行为的研究[J]. 现代化工, 2020, 40(6): 89-94.
[13] 高君安, 李想, 史东军, 曲令多, 张傑. ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究[J]. 现代化工, 2020, 40(6): 123-127.
[14] 陆美环, 刘征, 陈俊华, 杨建新. CuO改性HY分子筛的制备及催化芳烃和苯甲醇的苄基化反应研究[J]. 现代化工, 2020, 40(6): 128-132.
[15] 王娟, 王泽昱, 王博磊, 王鹤臻, 刁国华, 谭燚, 潘立卫. 介微孔分子筛催化剂在甲烷重整反应中的研究进展[J]. 现代化工, 2020, 40(5): 32-35.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn