Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (12): 141-146    DOI: 10.16606/j.cnki.issn0253-4320.2020.12.029
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
焙烧态MCNOs/LDH复合材料的制备及其对水体F-去除的研究
郭丽君, 梁颖, 张艳荣, 包璐瑀, 张卫珂
太原理工大学环境科学与工程学院, 山西 晋中 030600
Preparation of calcined MCNOs/LDH composites and study on their performance in removing F- from water
GUO Li-jun, LIANG Ying, ZHANG Yan-rong, BAO Lu-yu, ZHANG Wei-ke
College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
下载:  PDF (2842KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用水热法制备磁性纳米洋葱碳/层状双金属氢氧化物(MCNOs/LDH)复合材料,高温煅烧制备了焙烧态MCNOs/LDH复合材料(MCNOs/CLDH),并通过正交试验确定最佳煅烧工艺参数。利用XRD、FT-IR、SEM、N2吸附-脱附(BET)和VSM等对其结构形貌进行表征,并通过静态吸附实验考察MCNOs/CLDH对F-的吸附性能。结果表明,在焙烧温度为550℃、焙烧时间为2 h的最佳条件下制备的MCNOs/CLDH对F-的吸附容量为28.95 mg/g,去除效率为57.9%。此外,结合MCNOs/CLDH吸附F-后的XRD分析可知,吸附机理包括表面吸附、离子交换和混合金属氧化物的再水化以及氟离子向层间区域的嵌入,从而重建原始的LDH结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丽君
梁颖
张艳荣
包璐瑀
张卫珂
关键词:  MCNOs/CLDH  记忆效应  F-  吸附  磁分离  复合材料  再生    
Abstract: Magnetic carbon nano onions/layered double hydroxides (MCNOs/LDH) composites are synthesized via hydrothermal process,and calcinated at high temperature to prepare calcinated MCNOs/LDH (MCNOs/CLDH).The optimal calcination process parameters are determined through orthogonal experiments.The as-synthesized composites are characterized by SEM,XRD,FT-IR,N2 adsorption-desorption isotherms and VSM.Adsorption performance of MCNOs/CLDH to F- is investigated by static adsorption experiments.The results suggest that MCNOs/CLDH composites prepared at the optimal conditions such as a calcination temperature of 550℃ and a calcination time of 2 h exhibit an adsorption capacity of 28.95 mg·g-1 to F- and a removal rate of 57.9% for F-.What's more,analysis results demonstrate that the adsorption mechanism involves in surface adsorption,ion exchange interaction and original LDH structure reconstruction by rehydration of mixed metal oxides and concomitant intercalation of fluoride ions into the interlayer region.
Key words:  MCNOs/CLDH    memory effect    F-    adsorption    magnetic separation    composites    regeneration
收稿日期:  2020-02-02      修回日期:  2020-10-10          
ZTFLH:  X522  
基金资助: 山西省重点研发计划(社会发展领域)(201803D31049)
通讯作者:  张卫珂(1981-),男,博士,副教授,研究方向为纳米材料,通讯联系人,zhangweike@tyut.edu.cn。    E-mail:  zhangweike@tyut.edu.cn
作者简介:  郭丽君(1992-),女,硕士研究生,研究方向为纳米材料在水处理中的应用,1457940185@qq.com
引用本文:    
郭丽君, 梁颖, 张艳荣, 包璐瑀, 张卫珂. 焙烧态MCNOs/LDH复合材料的制备及其对水体F-去除的研究[J]. 现代化工, 2020, 40(12): 141-146.
GUO Li-jun, LIANG Ying, ZHANG Yan-rong, BAO Lu-yu, ZHANG Wei-ke. Preparation of calcined MCNOs/LDH composites and study on their performance in removing F- from water. Modern Chemical Industry, 2020, 40(12): 141-146.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.12.029  或          https://www.xdhg.com.cn/CN/Y2020/V40/I12/141
[1] 章萍,杨陈凯,马若男,等.碳纳米管/羟基磷灰石复合材料对水体F-的去除研究[J].中国环境科学,2019,39(1):179-187.
[2] Cai J G,Zhao X,Zhang Y Y,et al.Enhanced fluoride removal by La-doped Li/Al layered double hydroxides[J].Journal of Colloid and Interface Science,2018,509:353-359.
[3] 马福臻,周少奇,刘泽珺,等.三维网状HZO@SGH对水中氟离子的吸附作用和机制[J].环境科学,2018,39(2):828-837.
[4] Amini M,Mueller K,Abbaspour K C,et al.Statistical modeling of global geogenicfluoride contamination in groundwaters[J].Environmental Science & Technology,2008,42(10):3662-3668.
[5] Chowdhury A,Adak M K,Mukherjee A,et al.A critical review on geochemical and geological aspects of fluoride belts,fluorosis and natural materials and other sources for alternatives to fluoride exposure[J].Journal of Hydrology,2019,574:333-359.
[6] Kang D J,Yu X L,Ge M F.Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal[J].Chemical Engineering Journal,2017,330:6-43.
[7] Belkada F D,Kitous O,Drouiche N,et al.Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater[J].Separation and Purification Technology,2018,204:108-115.
[8] Nunes-pereira J,Lima R,Choudhary G,et al.Highly efficient removal of fluoride from aqueous media through polymer compositemembranes[J].Separation and PurificationTechnology,2018,205:1-10.
[9] Ben Grich N,Attour A,Mostefa M L,et al.Fluoride removal from water by electrocoagulation:Effect of the type of water and theexperimental parameters[J].Electrochimica Acta,2019,316:257-265.
[10] Uddin M K.A review on the adsorption of heavy metals by clay minerals,with special focus on the past decade[J].Chemical Engineering Journal,2017,308:438-462.
[11] Hsu Y T,Wu J C S,Nguyen V H.Mg</em>xAl-LDHs layered double hydroxides catalysts for boosting catalytic synthesis of biodiesel and conversion of by-product into valuable glycerol carbonate[J].Journal of the Taiwan Institute of Chemical Engineers,2019,104:219-226.
[12] Guo Y D,Gong Z H,Li C X,et al.Efficient removal of uranium(Ⅵ) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite:A synthetic experimental and mechanism studies[J].Chemical Engineering Journal,2019,392:123633.
[13] Xu S,Zhao J W,Yu Q Q,et al.Understanding how specific functional groups in humic acid affect the sorption mechanisms of different calcinated layered double hydroxides[J].Chemical Engineering Journal,2019,392.
[14] 张微,张志刚,李学亮,等.水滑石对氟离子的去除作用研究[J].沈阳化工大学学报,2018,32(4):335-339.
[15] Mrozek O,Ecorchard P,Vomacka P,et al.Mg-Al-La LDH-MnFe2O4 hybrid material for facile removal of anionic dyes from aqueous solutions[J].Applied Clay Science,2019,169:1-9.
[16] Mourid E,Lakraimi M,Benaziz L,et al.Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide[J].Applied Clay Science,2019,168:87-95.
[17] Zhang W K,Wang J W,Yang Y Q,et al.Novel magnetically retrievable Bi2WO6/magnetic carbon nano-onions composite with enhanced photoactivity under visible light[J].Journal of Colloid and Interface Science,2018,531:502-512.
[18] Zhou F,Pan N Y,Chen H Y,et al.Hydrogen production through steam reforming of toluene over Ce,Zr or Fe promoted Ni-Mg-Al hydrotalcite-derived catalysts at low temperature[J].Energy Conversion and Management,2019,196:677-687.
[19] Zhao G Q,Li C F,Wu X,et al.Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J].Applied Surface Science,2018,434:251-259.
[20] 卫彩云,谭静静,夏晓丽,等.焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响[J].化工学报,2019,70(4):1409-1419.
[21] Li X L,Zhang Y,Jing L J,et al.Novel N-doped CNTs stabilized Cu2O nanoparticles as adsorbent for enhancing removal of Malachite Green and tetrabromobisphenolA[J].Chemical Engineering Journal,2016,292:326-339.
[22] Lee S H,Tanaka M,Takahashi Y,et al.Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide:Investigation of comparative adsorption mechanism by surface characterization[J].Chemosphere,2018,211:903-911.
[23] Luo Y J,Zheng Y B,Zuo J C,et al.Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation[J].Journal of Hazardous Materials,2018,349:119-127.
[24] Gao G,Zhu Z,Zheng J,et al.Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction:Fabrication and mechanism[J].Journal of Colloid and Interface Science,2019,555:1-10.
[25] Bing X M,Li J,Liu J,et al.Biomimetic synthesis of Bi2O3/Bi2WO6/MgAl-CLDH hybrids from lotus pollen and their enhanced adsorption and photocatalysisperformance[J].Journal of Photochemistry and Photobiology A:Chemistry,2018,364:449-460.
[26] Pena-garcia R,Guerra Y,Santos F E P,et al.Structural and magnetic properties of Ni-doped yttrium iron garnet nanopowders[J].Journal of Magnetism and Magnetic Materials,2019,492:165650.
[27] Pena-garcia R,Guerra Y,Buitrago D M,et al.Synthesis and characterization of yttrium iron garnet nanoparticles doped with cobalt[J].Ceramics International,2018,44(10):11314-11319.
[28] Kong L C,Tian Y,Pang Z,et al.Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites[J].Chemical Engineering Journal,2019,371:893-902.
[29] Zhang H,Chen H,Azat S,et al.Super adsorption capability of rhombic dodecahedral Ca-Al layered double oxides for Congo red removal[J].Journal of Alloys and Compounds,2018,768:572-581.
[1] 林晓雪, 张妍, 张大帅, 宋军军, 李晨, 张苏敏, 孙天一, 张小朋, 史载锋, 林强. 基于石墨烯制备超疏水复合材料的研究进展[J]. 现代化工, 2020, 40(S1): 22-25,32.
[2] 沈永贤, 舒绪刚, 吴江昊, 麦健华, 胡洪超. 单宁基吸附材料的研究进展[J]. 现代化工, 2020, 40(S1): 64-70.
[3] 孟雨辰, 王彦辉, 荆蓉, 张锐涛, 张兴刚. 碳纤维复合材料用环氧树脂体系研究进展[J]. 现代化工, 2020, 40(S1): 75-78.
[4] 高天赐, 崔建国, 张峰. 下凹式绿地人工滤层对初期雨水中Cu2+的截留实验研究[J]. 现代化工, 2020, 40(S1): 132-137.
[5] 刘紫云, 崔建国, 李红艳, 张峰, 王朝旭, 崔佳丽. K2FeO4强化采煤污染土壤吸附固定Pb2+的实验研究[J]. 现代化工, 2020, 40(S1): 176-180.
[6] 吕存彬, 刘清华, 李闯, 郭志远, 王永杰, 项玉芝. 不同银引入方式的多级孔分子筛的制备及表征[J]. 现代化工, 2020, 40(S1): 190-194.
[7] 段泽康, 唐晓东, 周淼, 袁文博, 潘小燕. 馏分油绿色脱酸实验研究[J]. 现代化工, 2020, 40(S1): 200-202,206.
[8] 涂燕红, 郝双龙, 吴婷, 李小忠, 陈寒松. 膜过滤工艺应用于研磨废水处理的案例分析[J]. 现代化工, 2020, 40(S1): 226-228,233.
[9] 徐然, 左华江, 唐春怡, 姚剑松. 壳聚糖类吸附材料的制备及应用研究进展[J]. 现代化工, 2020, 40(9): 25-29.
[10] 郭恒瑞, 董笑程, 杨敬一, 徐心茹. 双曼尼希碱酸化缓蚀剂的制备与缓蚀性能研究[J]. 现代化工, 2020, 40(9): 180-184.
[11] 刘佳, 刘丹丹. 液态烃中噻吩脱除剂的研制及工业放大[J]. 现代化工, 2020, 40(9): 204-208.
[12] 杨勇. 使用脱盐单元对富乙二醇脱水再生的创新方法开发及应用[J]. 现代化工, 2020, 40(9): 214-217.
[13] 刘明庆, 申静秀, 范梦婕, 陈英文, 沈树宝. 微污染有机物深度净化技术进展[J]. 现代化工, 2020, 40(8): 31-34,38.
[14] 田贺, 易红宏, 唐晓龙, 赵顺征, 张晓东, 任晨阳. 甲硫醇恶臭气体的催化剂氧化研究进展[J]. 现代化工, 2020, 40(8): 35-38.
[15] 程华农, 邱娜娜, 郑世清. 降低湿法脱硫过程中副盐生成的研究[J]. 现代化工, 2020, 40(8): 73-77,82.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn