Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (11): 159-163    DOI: 10.16606/j.cnki.issn0253-4320.2020.11.033
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
SnS2/RGO/WS2复合材料的制备及其催化性能的研究
祁佳音, 郭卓
沈阳化工大学材料科学与工程学院, 辽宁 沈阳 110142
Study on preparation and catalytic performance of SnS2/RGO/WS2 composites
QI Jia-yin, GUO Zhuo
School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
下载:  PDF (3646KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高锂离子电池负极材料的电催化析氢性能,以石墨烯为载体,采用水热法制备了还原氧化石墨烯(RGO)纳米片负载WS2、SnS2复合纳米材料。电化学性能测试结果表明,当SnS2与WS2的物质的量的比为1:2、电流密度为10 mA/cm2时,其在0.5 mol/L的H2SO4电解质溶液中的过电位为180 mV,Tafel斜率为129 mV/dec。SnS2/RGO/WS2复合纳米材料作为无贵金属的电催化剂具有巨大的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁佳音
郭卓
关键词:  石墨烯  二硫化钨  二硫化锡  水热法  析氢反应    
Abstract: In order to improve the electrocatalytic hydrogen evolution performance of anode materials of lithium ion battery,the reduced graphene oxide (RGO) nanosheets loaded with WS2 and SnS2 composite nanomaterials are prepared via a simple hydrothermal method by using graphene as a carrier.The results from electrochemical performance test show that the overpotential of the prepared composite in a 0.5 mol·L-1 H2SO4electrolyte solution is 180 mV and its Tafel slope is 129 mV·dec-1 when the mass ratio of SnS2 to WS2 is 1:2,and the current density is 10 mA·cm-2.The environmentally friendly synthesis method and excellent performance show that SnS2/RGO/WS2 composite nanomaterial has a great potential as an electrocatalyst without precious metals.
Key words:  graphene    tungsten disulfide    tin disulfide    hydrothermal method    hydrogen evolution reaction
收稿日期:  2020-01-14      修回日期:  2020-09-20          
ZTFLH:  TB33  
  TM912  
基金资助: 辽宁省自然基金(2019-ZD-0084)
通讯作者:  郭卓(1975-),女,博士,副教授,研究方向为电化学,通讯联系人,guozhuochina@syuct.edu.cn。    E-mail:  guozhuochina@syuct.edu.cn
作者简介:  祁佳音(1994-),女,硕士研究生,研究方向为电化学析氢,2449877351@qq.com
引用本文:    
祁佳音, 郭卓. SnS2/RGO/WS2复合材料的制备及其催化性能的研究[J]. 现代化工, 2020, 40(11): 159-163.
QI Jia-yin, GUO Zhuo. Study on preparation and catalytic performance of SnS2/RGO/WS2 composites. Modern Chemical Industry, 2020, 40(11): 159-163.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.11.033  或          https://www.xdhg.com.cn/CN/Y2020/V40/I11/159
[1] Gao X,Yu G,Zheng L C,et al.Strong electron coupling from the sub-nanometer Pd clusters confined in porous ceria nanorods for highly efficient electrochemical hydrogen evolution reaction[J].ACS Applied Energy Materials,2019,(2):966-973.
[2] Hu J,Huang B L,Zhang C X,et al.Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction[J].Energy & Environmental Science,2017,10:593-603.
[3] Alex C,Bhat S A,John N S,et al.Highly efficient and sustained electrochemical hydrogen evolution by embedded Pd-nanoparticles on a coordination polymer-reduced graphene oxide composite[J].ACS Applied Energy Materials,2019,(2):8098-8106.
[4] Chen S Q,Chen X B,Wang G J,et al.Reaction mechanism with thermodynamic structural screening for electrochemical hydrogen evolution on monolayer 1T' Phase MoS2[J].Chemistry of Materials,2018,(30):5404-5411.
[5] He Q Q,Chen X B,Chen S Q,et al.Electrochemical hydrogen evolution at the interface of monolayer VS2 and water from first-principles calculations[J].ACS Applied Materials & Interfaces,2018,(11):2944-2949.
[6] Feng X,Wang H,Bo X,et al.Bimetal-organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution[J].ACS Applied Materials & Interfaces,2019,(11):8018-8024.
[7] Muralikrishna S,Ravishankar T N,Ramakrishnappa T,et al.Non-noble metal graphene oxide-copper(Ⅱ) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction[J].Environmental Progress & Sustainable Energy,2016,(35):565-573.
[8] Leyla Najafi,Sebasttiano Bellani,Reinier Oropesa-Nuñez,et al.Doped MoSe2 nanoflakes 3d metal oxide hydr(oxy)oxides hybrid catalysts for pH universal electrochemical hydrogen evolution reaction[J].Adv Energy Mater,Doi:10.1002/aenm.201801764.
[9] Zang M J,Xu N,Cao G X,et al.Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction[J].ACS Catalysis,2018,(8):5062-5069.
[10] Zhang B,et al.Low-temperature electrochemical codeposition of aluminum-neodymium alloy in a highly stable solvate ionic liquid[J].Journal of Solid State Electrochemistry,2019,(23):1903-1909.
[11] Pohrelyuk I,Tkachuk O,Proskurnyak R,et al.Influence of regulated modification of nitride layer by oxygen on the electrochemical behavior of Ti6Al4V alloy in the Ringer's solution[J].Materials and Corrosion,2019,(70):2320-2325.
[12] Sun Y L,Wang B L,Yang N,et al.Synthesis of RGO-supported molybdenum carbide (Mo2C-RGO) for hydrogen evolution reaction under the function of poly(ionic liquid)[J].Industrial & Engineering Chemistry Research,2019,(58):8996-9005.
[13] Wang J B,Chen L,Zeng L,et al.In situ synthesis of WSe2/CMK-5 nanocomposite for rechargeable lithium-ion batteries with a long-term cycling stability[J].ACS Sustainable Chemistry & Engineering,2018,(6):4688-4694.
[14] Ma L,Xu L M,Lin W L,et al.Hydrothermal synthesis of selenium-doped graphene-like molybdenum disulfide/graphene hybrid as an efficient electrocatalyst for hydrogen evolution[J].Advanced Powder Technology,2016,(27):2153-2160.
[15] Zheng X L,Xu J B,Yan K Y,et al.Spaceconfined growth of MoS2 nanosheets within graphite:The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J].Chem Mater,2014,26(7):2344-2353.
[1] 林晓雪, 张妍, 张大帅, 宋军军, 李晨, 张苏敏, 孙天一, 张小朋, 史载锋, 林强. 基于石墨烯制备超疏水复合材料的研究进展[J]. 现代化工, 2020, 40(S1): 22-25,32.
[2] 赵丹, 梁飞雪, 封瑞江, 鞠佳. 不同形貌CeO2的制备及光催化性能研究[J]. 现代化工, 2020, 40(S1): 203-206.
[3] 付凤艳, 程敬泉, 张杰, 高志华, 张素芳. 季铵盐化氧化石墨烯复合磺化聚磷腈质子交换膜的制备与表征[J]. 现代化工, 2020, 40(9): 148-153.
[4] 王浩宇, 李忠辉, 马新胜. 不同还原程度的功能化氧化石墨烯的制备与性能研究[J]. 现代化工, 2020, 40(9): 163-167.
[5] 陶艳琪, 肖佩荣, 王琪. 油胺对乙醇脱氢硅酸铜催化剂性能的影响[J]. 现代化工, 2020, 40(9): 176-179.
[6] 杜科志, 杜海军, 张艳, 张欣月, 杨蓉, 张姣姣. 石墨烯电化学传感器检测4-氯苯氧乙酸的研究[J]. 现代化工, 2020, 40(9): 231-234.
[7] 施楠彬, 张东. 新型气凝胶基复合相变材料研究进展[J]. 现代化工, 2020, 40(8): 39-43,48.
[8] 李璐, 丁长坤, 张宇鑫, 岳程飞, 陈宁宁. 壳聚糖/胺基化氧化石墨烯复合膜对Cu2+吸附行为的研究[J]. 现代化工, 2020, 40(8): 167-172.
[9] 秦洪伟, 闫彬, 王鑫, 刘妍, 尤国红. 石墨烯锰卟啉复合电极测定磺胺[J]. 现代化工, 2020, 40(8): 214-217.
[10] 丁伟, 黄李金鸿, 黄万抚, 张鑫. 改性有机纳滤膜研究进展[J]. 现代化工, 2020, 40(7): 21-24,29.
[11] 陈彦广, 于加蒙, 张亚男, 徐瑞晗, 邓冀童, 韩洪晶. 碱式碳酸镍前驱体合成过程调控及其焙烧制球形氧化镍的研究[J]. 现代化工, 2020, 40(6): 83-88.
[12] 任翔宇, 陈惠, 林祥宝, 吴志刚, 刘洪波. 茶多酚改性石墨烯增强高分子复合材料的制备与性能研究[J]. 现代化工, 2020, 40(6): 138-144.
[13] 蔡琨, 沙鑫鑫, 刘小燕, 陆维青, 姜晟. 离子液体磁性石墨烯吸附环境水样中的氟喹诺酮类抗生素[J]. 现代化工, 2020, 40(6): 227-233.
[14] 鲁逸飞, 王黎, 李钰琦, 覃刘平, 余杨. 新型磁性氧化石墨烯的制备及其对Cd2+的吸附性能[J]. 现代化工, 2020, 40(5): 137-142.
[15] 张越鹏, 杨晓峰, 陈志萍, 毛贝贝, 孙振豪, 王慧婕. 功能化反应对氧化石墨烯结构和性质的影响研究[J]. 现代化工, 2020, 40(5): 154-158.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn