Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (11): 34-38    DOI: 10.16606/j.cnki.issn0253-4320.2020.11.007
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
含纳米颗粒的泡沫体系及其在水力压裂中的研究进展
李小刚1, 谢诗意1, 杨兆中1, 朱静怡1,2
1. 西南石油大学油气藏地质及开发工程国家重点实验室, 四川 成都 610500;
2. 得克萨斯大学奥斯汀分校化学工程系, 美国 奥斯汀 78731
Research progress on nanoparticles-containing foam system and its application in hydraulic fracturing
LI Xiao-gang1, XIE Shi-yi1, YANG Zhao-zhong1, ZHU Jing-yi1,2
1. State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
2. Department of Chemical Engineering, The University of Texas at Austin, Austin TX 78712, USA
下载:  PDF (3313KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 阐述了纳米颗粒与表面活性剂之间通过协同作用减缓液膜排液、气泡并聚与破裂、泡沫粗化的衰变过程;简述了不同表面活性剂与纳米颗粒在稳定泡沫机理上的异同;综述了纳米颗粒浓度和亲疏水性对不同表面活性剂泡沫流体性能的影响;分析发现纳米颗粒的加入使泡沫压裂液体系性能得到改善。提出对纳米颗粒稳泡机理、表面活性、改性修饰、稳定性的研究是今后的重要探索方向,最后对纳米颗粒未来在泡沫压裂液中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小刚
谢诗意
杨兆中
朱静怡
关键词:  泡沫  表面活性剂  稳泡机理  泡沫压裂液  纳米颗粒    
Abstract: It is demonstrated that the synergistic effect between nanoparticles and surfactants slows down the process of liquid film drainage,bubble coalescence and cracking,and bubble coarsening.The similarities and differences of foam stabilization mechanism between different surfactants and nanoparticles are described.Influences of concentration,hydrophilicity and hydrophobicity of nanoparticles on the performance of foam fracturing fluids stabilized by different surfactants are reviewed.It is found through analysis that the present of nanoparticles improves the performance of foam fracturing fluid system.Significant research directions in the future are suggested to focus on nanoparticle stabilization mechanism,nanoparticle surface activity,nanoparticle modification,nanoparticles stability.The application of nanoparticles in foam fracturing fluids are expected.
Key words:  foam    surfactant    mechanism of foam stabilization    foam fracturing fluids    nanoparticles
收稿日期:  2020-02-04      修回日期:  2020-08-27          
ZTFLH:  TE357  
基金资助: "十三五"国家科技重大专项(2016ZX05044004-002)
通讯作者:  谢诗意(1997-),女,硕士生,研究方向为非常规油气资源增产改造技术,通讯联系人,765280806@qq.com。    E-mail:  765280806@qq.com
作者简介:  李小刚(1981-),男,博士,教授,博士生导师,研究方向为油气增产改造理论、技术和非常规天然气开发,swpuadam@126.com
引用本文:    
李小刚, 谢诗意, 杨兆中, 朱静怡. 含纳米颗粒的泡沫体系及其在水力压裂中的研究进展[J]. 现代化工, 2020, 40(11): 34-38.
LI Xiao-gang, XIE Shi-yi, YANG Zhao-zhong, ZHU Jing-yi. Research progress on nanoparticles-containing foam system and its application in hydraulic fracturing. Modern Chemical Industry, 2020, 40(11): 34-38.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.11.007  或          https://www.xdhg.com.cn/CN/Y2020/V40/I11/34
[1] 仝少凯,高德利.水力压裂基础研究进展及发展建议[J].石油钻采工艺,2019,41(1):101-115.
[2] 杨兆中,朱静怡,李小刚,等.纳米颗粒稳定泡沫在油气开采中的研究进展[J].化工进展,2017,36(5):1675-1681.
[3] Bergeron V,Altermo A,Claesson P M.Disjoining pressure measurements for foam films stabilized by a nonionic sugar-based surfactant[J].Langmuir,1996,12(5):1336-1342.
[4] 李小刚,宋峙潮,宋瑞,等.泡沫压裂液研究进展与展望[J].应用化工,2019,48(2):412-417.
[5] Rognmo A U,Horjen H,Fernoslash M A.Nanotechnology for improved CO2 utilization in CCS:Laboratory study of CO2-foam flow and silica nanoparticle retention in porous media[J].International Journal of Greenhouse Gas Control,2017,64:113-118.
[6] Gu M,Mohanty K K.Effect of foam quality on effectiveness of hydraulic fracturing in shales[J].International Journal of Rock Mechanics and Mining Sciences,2014,70:273-285.
[7] Binks B P,Horozov T S.Aqueous foams stabilized solely by silica nanoparticles[J].Angewandte Chemie International Edition,2005,44(24):3722-3725.
[8] Gonzenbach U T,Studart A R,Tervoort E,et al.Ultrastable particle-stabilized foams[J].Angewandte Chemie International Edition,2006,45(21):3526-3530.
[9] Yekeen N,Manan M A,Idris A K,et al.Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles[J].Journal of Petroleum Science and Engineering,2017,159:115-134.
[10] 孙乾,李兆敏,李松岩,等.SiO2纳米颗粒稳定的泡沫体系驱油性能研究[J].中国石油大学学报:自然科学版,2014,38(4):124-131.
[11] 于文洋.离子型表面活性剂与纳米颗粒的稳泡作用及其机理研究[D].青岛:中国石油大学(华东),2016.
[12] Lv Q,Li Z,Li B,et al.Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid[J].Industrial & Engineering Chemistry Research,2015,54(38):9468-9477.
[13] Yekeen N,Padmanabhan E,Idris A K,et al.Synergistic effects of nanoparticles and surfactants on n-decane-water interfacial tension and bulk foam stability at high temperature[J].Journal of Petroleum Science and Engineering,2019,179:814-830.
[14] Verma A,Chauhan G,Baruah P P.Morphology,rheology,and kinetics of nanosilica stabilized gelled foam fluid for hydraulic fracturing application[J].Industrial & Engineering Chemistry Research,2018,57(40):13449-13462.
[15] Binks B P,Kirkland M,Rodrigues J A.Origin of stabilisation of aqueous foams in nanoparticle-surfactant mixtures[J].Soft Matter,2008,4(12):2373-2382.
[16] Vatanparast H,Javadi A,Bahramian A.Silica nanoparticles cationic surfactants interaction in water-oil system[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2017,521:221-230.
[17] Carn F,Colin A,Pitois O,et al.Foam drainage in the presence of nanoparticle-surfactant mixtures[J].Langmuir,2009,25(14):7847-7856.
[18] She W,Du Y,Miao C,et al.Application of organic-and nanoparticle-modified foams in foamed concrete:Reinforcement and stabilization mechanisms[J].Cement and Concrete Research,2018,106:12-22.
[19] Worthen A J,Bryant S L,Huh C,et al.Carbon dioxide-in-water foams stabilized with nanoparticles and surfactant acting in synergy[J].AIChE Journal,2013,59(9):3490-3501.
[20] Guo F,Aryana S.An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery[J].Fuel,2016,186:430-442.
[21] Baruah A,Shekhawat D S,Pathak A K,et al.Experimental investigation of rheological properties in zwitterionic-anionic mixed-surfactant based fracturing fluids[J].Journal of Petroleum Science and Engineering,2016,146:340-349.
[22] Li S Y,Yang K,Li Z M,et al.Properties of CO2 foam stabilized by hydrophilic nanoparticles and nonionic surfactants[J].Energy & Fuels,2019,33(6):5043-5054.
[23] Alyousef Z A,Alombarky M A,Schechter D S.The effect of nanoparticle aggregation on surfactant foam stability[J].Journal of Colloid and Interface Science,2018,511:365-373.
[24] Nagarajan R.Molecular packing parameter and surfactant self-assembly:The neglected role of the surfactant tail[J].Langmuir,2002,18(1):31-38.
[25] Yekeen N,Padmanabhan E,Idris A K,et al.Nanoparticles applications for hydraulic fracturing of unconventional reservoirs:A comprehensive review of recent advances and prospects[J].Journal of Petroleum Science and Engineering,2019,178:41-73.
[26] Zhang Y,Dai C,Qian Y,et al.Rheological properties and formation dynamic filtration damage evaluation of a novel nanoparticle-enhanced VES fracturing system constructed with wormlike micelles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,553:244-252.
[27] 杨兆中,朱静怡,李小刚,等.含纳米颗粒的黏弹性表面活性剂泡沫压裂液性能[J].科学技术与工程,2018,18(10):42-47.
[28] Zhu J Y,Yang Z Z,Li X G,et al.Experimental study on the microscopic characteristics of foams stabilized by viscoelastic surfactant and nanoparticles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,572:88-96.
[29] Zhu J Y,Yang Z Z,Li X G,et al.Settling behavior of the proppants in viscoelastic foams on the bubble scale[J].Journal of Petroleum Science and Engineering,2019,181:106216.
[1] 王刚, 邱俊彬, 朱佳平, 谭华, 侯兆凯. 两亲性SiO2/APTES/PFOA纳米颗粒的制备及其界面性能研究[J]. 现代化工, 2020, 40(S1): 88-91.
[2] 陶艳, 苏冰琴, 张弛, 刘一清, 林昱廷. CMC-g-AA对掺污泥泡沫混凝土吸水保水性能的影响[J]. 现代化工, 2020, 40(S1): 151-156.
[3] 田兴旺, 张琨, 张殿光, 王平, 徐士鸣. 纳米磁流体耦合金属泡沫对流换热特性研究[J]. 现代化工, 2020, 40(9): 51-55.
[4] 陶艳琪, 肖佩荣, 王琪. 油胺对乙醇脱氢硅酸铜催化剂性能的影响[J]. 现代化工, 2020, 40(9): 176-179.
[5] 李玲芳, 尹俊霞, 贾桥, 马翔, 王琦. 二氧化锰纳米颗粒比色法测定谷胱甘肽[J]. 现代化工, 2020, 40(8): 218-220,226.
[6] 杨湘智, 周浩, 梅皓天, 张雨, 张猛, 林匡飞. 螯合型表面活性剂修复石油-镉复合污染土壤研究[J]. 现代化工, 2020, 40(7): 74-78.
[7] 潘一, 马迪, 张金辉, 廖松泽, Regina Rassadkina, 杨洋. 聚合物稳泡剂泡沫驱中耐温性研究进展[J]. 现代化工, 2020, 40(2): 41-47.
[8] 郭东红, 沈文敏, 杨晓鹏, 孙建峰, 李睿博, 崔晓东. 耐酸耐高温泡沫剂的研制及在超稠油蒸汽吞吐上的应用[J]. 现代化工, 2020, 40(10): 175-177.
[9] 金礼俊, 唐善法, 崔琰奇, 胡睿智, 郑雅慧. 酰胺基羧酸盐型Gemini表面活性剂的合成与性能[J]. 现代化工, 2019, 39(8): 115-119.
[10] 丁秦, 关昌峰, 左夏华, 阎华, 杨卫民, 安瑛. 中华墨纳米颗粒在太阳能海水蒸馏中的应用[J]. 现代化工, 2019, 39(8): 89-92.
[11] 朱磊, 俞泽民, 周子豪, 朱明亮. 一步水热法制备二氧化钛纳米线-还原氧化石墨烯复合材料及其超级电容器性能研究[J]. 现代化工, 2019, 39(5): 146-150.
[12] 周梅, 蔡晓君, 窦艳涛, 从润林. 急冷油塔污垢清洗试剂配方的试验研究[J]. 现代化工, 2019, 39(4): 141-143,145.
[13] 宋芳, 高珊, 吕团结, 李红萍. 2-乙基己基葡糖苷的合成及其性能测试[J]. 现代化工, 2019, 39(4): 170-173.
[14] 李睿博, 郭东红, 王源源, 孙建峰. 调驱一体化泡沫驱油体系配方优化研究[J]. 现代化工, 2019, 39(2): 140-143.
[15] 郭东红, 李睿博, 孙建峰, 崔晓东. 新型低张力泡沫驱油体系性能研究[J]. 现代化工, 2019, 39(10): 116-118.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn