Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (9): 20-24,29    DOI: 10.16606/j.cnki.issn0253-4320.2020.09.005
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
微生物燃料电池技术及其应用研究进展
刘远峰, 张秀玲, 李从举
北京市工业典型污染物资源化处理重点实验室, 北京科技大学能源与环境工程学院, 北京 100083
Advances in microbial fuel cells technology and its application
LIU Yuan-feng, ZHANG Xiu-ling, LI Cong-ju
Beijing Key Laboratory of Resource-oriented Treatment of Typical Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  PDF (2833KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了微生物燃料电池(microbial fuel cells,MFCs)技术原理、材料、产电微生物,分析了MFCs应用领域及其限制因素,综述了MFCs的最新研究状况,最后对MFCs的未来发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘远峰
张秀玲
李从举
关键词:  微生物燃料电池  废水处理  产电效率  生物产能  能源    
Abstract: The technological principle,materials needed and electrochemically active bacteria of microbial fuel cells (MFCs) are introduced.MFCs' application fields and limiting factors are also analyzed.Besides,worldwide latest research situation of MFCs is reviewed,and the future development of MFCs is prospected.
Key words:  microbial fuel cell    wastewater treatment    power generation efficiency    biological capacity    energy
收稿日期:  2019-11-27      修回日期:  2020-06-26          
ZTFLH:  TM911.45  
基金资助: 国家自然科学基金项目(51973015,21274006,51073005);北京市科技北京百名领军人才工程(Z161100004916168);中央高校基本科研业务费专项资金项目(06500100)
通讯作者:  李从举(1972-),男,教授,博士生导师,研究方向为纳米功能材料,通讯联系人,congjuli@126.com。    E-mail:  congjuli@126.com
作者简介:  刘远峰(1990-),男,博士生,研究方向为微生物燃料电池的设计与制备
引用本文:    
刘远峰, 张秀玲, 李从举. 微生物燃料电池技术及其应用研究进展[J]. 现代化工, 2020, 40(9): 20-24,29.
LIU Yuan-feng, ZHANG Xiu-ling, LI Cong-ju. Advances in microbial fuel cells technology and its application. Modern Chemical Industry, 2020, 40(9): 20-24,29.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.09.005  或          https://www.xdhg.com.cn/CN/Y2020/V40/I9/20
[1] Liu Q,Yang Y,Mei X,et al.Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells[J].Science of The Total Environment,2018,631/632:695-701.
[2] Choi S,Kim B,Chang I S.Tracking of shewanella oneidensis MR-1 biofilm formation of a microbial electrochemical system,via,differential pulse voltammetry[J].Bioresource Technology,2018,254:357-361.
[3] Wang H R,Fu B Y,Xi J Y,et al.Remediation of simulated malodorous surface water by columnar air-cathode microbial fuel cells[J].Science of the Total Environment,2019,687:287-296.
[4] Santoro C,Ieropoulos I,Greenman J,et al.Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine[J].Journal of Power Sources,2013,238:190-196.
[5] Feng C,Huang L,Yu H,et al.Simultaneous phenol removal,nitrification and denitrification using microbial fuel cell technology[J].Water Research,2015,76:160-170.
[6] Yi Y,Xie B Z,Zhao T,et al.Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and,Shewanella loihica,PV-4 and underlying biological mechanism[J].Bioresource Technology,2018,265:415-421.
[7] Sun H,Zhang Y,Wu S,et al.Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion[J].Science of The Total Environment,2019,655:1439-1447.
[8] Wang H R,Fu B Y,Xi J Y,et al.Remediation of simulated malodorous surface water by columnar air-cathode microbial fuel cells[J].Science of the Total Environment,2019,687:287-296.
[9] Huang H B,Cheng S A,Li F J,et al.Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells[J].Chemosphere,2019,225:548-556.
[10] Kalantar M,Mardanpour M M,Yaghmaei S.A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation[J].Bioelectrochemistry,2018,122:51-60.
[11] Chen J,Yang Y,Liu Y,et al.Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell[J].Bioresource Technology,2019,276:236-243.
[12] Bhuvaneswari A,Navanietha Krishnaraj R,Sheela Berchmans.Metamorphosis of pathogen to electrigen at the electrode/electrolyte interface:Direct electron transfer of Staphylococcus aureus leading to superior electrocatalytic activity[J].Electrochemistry Communications,2013,34:25-28.
[13] Yang X,Ma X,Wang K,et al.Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode[J].Electrochimica Acta,2016,210:846-853.
[14] Liu R,Zheng X,Li M,et al.A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms[J].Water Research,2019,158:401-410.
[15] Chen L,Zhang P,Shang W,et al.Enrichment culture of electroactive microorganisms with high magnetic susceptibility enhances the performance of microbial fuel cells[J].Bioelectrochemistry,2018,121:65-73.
[16] Huang L,Li X,Cai T,et al.Electrochemical performance and community structure in three microbial fuel cells treating landfill leachate[J].Process Safety and Environmental Protection,2018,113:378-387.
[17] Yan W F,Guo Y Y,Xiao Y,et al.The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing[J].Water Research,2018,142:105-114.
[18] Mohamed T A,Nasser A M B,Mohammad A H,et al.Anolyte in-situ functionalized carbon nanotubes electrons transport network as novel strategy for enhanced performance microbial fuel cells[J].Applied Energy,2018,228:167-175.
[19] Liu X B,Shi L,Gu J D.Microbial electrocatalysis:Redox mediators responsible for extracellular electron transfer[J].Biotechnology Advances,2018,36:1815-1827.
[20] Kim B H,Chang I S,Gadd G M.Challenges in microbial fuel cell development and operation[J].Appl Microbiol Biotechnol,2007,76(3):485-494.
[21] Pu K B,Ma Q,Cai W F,et al.Polypyrrole modified stainless steel as high performance anode of microbial fuel cell[J].Biochemical Engineering Journal,2018,132:255-261.
[22] Zhang X L,Fan W,Li H,et al.Extending cycling life of lithium-oxygen batteries based on novel catalytic nanofiber membrane and controllable screen-printed method[J].Journal of Materials Chemistry A,2018,6(43):21458-21467.
[23] Zhang X L,Fan W,Zhao S Y,et al.An efficient,bifunctional catalyst for lithium-oxygen batteries obtained through tuning the exterior Co2+/Co3+ ratio of CoOx on N-doped carbon nanofibers[J].Catalysis Science & Technology,2019,9(8):1998-2007.
[24] Bhowmick G D,Sovik D,Verma H K,et al.Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4[J].Electrochimica Acta,2019,310:173-183.
[25] Ahilan Vignesh,Wilhelm Michaela,Rezwan Kurosch.Porous polymer derived ceramic (PDC)-montmorillonite-H3PMo12O40/SiO2,composite membranes for microbial fuel cell (MFC) application[J].Ceramics International,2018,44:19191-19199.
[26] Sawasdee V,Pisutpaisal N.Simultaneous pollution treatment and electricity generation of tannery wastewater in air-cathode single chamber MFC[J].International Journal of Hydrogen Energy,2016,41:15632-15637.
[27] Zhao T,Xie B,Yi Y,et al.Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring[J].Bioresource Technology,2019,276:276-280.
[28] Jwa E,Yun Y M,Kim H,et al.Domestic wastewater treatment in a tubular microbial electrolysis cell with a membrane electrode assembly[J].International Journal of Hydrogen Energy,2018,44(2):652-660.
[29] 周秀秀,顾早立,郝小旋,等.剩余污泥燃料电池处理含铬废水的效能及机理[J].中国环境科学,2014,34(9):2245-2251.
[30] Ge Z,He Z.Long-term performance of a 200-liter modularized microbial fuel cell system treating municipal wastewater:Treatment,energy,and cost[J].Environmental Science:Water Research & Technology,2016,2:274-281.
[1] 李铭全, 成少安. 空气阴极微生物燃料电池堆栈的工艺优化研究[J]. 现代化工, 2020, 40(8): 185-189.
[2] 王洋洋, 赵金辉, 顾佳华, 蒋浩然, 王臻, 赵涵. 植物对人工湿地-微生物燃料电池耦合系统去污及产电性能的影响[J]. 现代化工, 2020, 40(4): 65-68.
[3] 王海涛, 奥德, 吕美婵, 刘亚攀, 常娜. 水性涂料生产废水的深度处理及资源化利用研究进展[J]. 现代化工, 2019, 39(S1): 45-48.
[4] 李文英, 刘玉香, 任瑞鹏, 李建会, 吕永康. 以PMS为阴极电子受体启动的微生物燃料电池产电及阳极微生物特性研究[J]. 现代化工, 2019, 39(9): 63-67.
[5] 李勇, 程治良, 全学军, 罗丹. 水力喷射空气旋流器吹脱处理挥发性有机物废水[J]. 现代化工, 2019, 39(9): 176-180.
[6] 王洪海, 韦晓晓, 薛璐璐, 王钊, 周琦, 李春利. 减压逆流多效精馏回收膜工业废水中的DMAC[J]. 现代化工, 2019, 39(8): 226-230,234.
[7] 谢雅清, 郁彬琦, 靳翠丽, 缪莉, 周晓见. 微藻规模化培养与生物能源开发[J]. 现代化工, 2019, 39(8): 27-32.
[8] 徐成龙, 张家威, 张饮江. 微生物脱盐燃料电池MDCs存在的问题及其应用研究进展[J]. 现代化工, 2019, 39(8): 69-72.
[9] 贾珍, 方红, 胡东欧, 孙仁金. 中国成品油消费需求波动及影响因素分析[J]. 现代化工, 2019, 39(7): 6-10.
[10] 刘登, 刘婷. 纳米粒子在生物燃料应用中的研究进展[J]. 现代化工, 2019, 39(7): 61-65.
[11] 何皓, 王旻烜, 张佳, 雪晶, 李建忠. 城市生活垃圾的能源化综合利用及产业化模式展望[J]. 现代化工, 2019, 39(6): 6-14.
[12] 姜洪殿, 董康银, 王金森, 孙仁金. 我国天然气分布式能源发展对策研究[J]. 现代化工, 2019, 39(5): 14-18.
[13] 宋坤莉, 赵东风, 罗庆芳, 邢亚斌, 李石. 类石墨相氮化碳的研究与应用[J]. 现代化工, 2019, 39(5): 52-55,57.
[14] 刘莹, 刘钰娇, 孟凡浩, 刘井来. 纤维素纳米晶的制备、改性及功能化应用[J]. 现代化工, 2019, 39(4): 58-62.
[15] 田庆文, 丁来保, 房桂干, 冉淼, 盘爱享, 张鼎军. 竹浆废水处理工程及污染物特征分析[J]. 现代化工, 2019, 39(4): 182-184.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn