Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (8): 218-220,226    DOI: 10.16606/j.cnki.issn0253-4320.2020.08.048
  分析测试 本期目录 | 过刊浏览 | 高级检索 |
二氧化锰纳米颗粒比色法测定谷胱甘肽
李玲芳, 尹俊霞, 贾桥, 马翔, 王琦
太原工业学院化学与化工系, 山西 太原 030008
Determination of glutathione by manganese dioxide nanoparticles based colorimetry
LI Ling-fang, YIN Jun-xia, JIA Qiao, MA Xiang, WANG Qi
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
下载:  PDF (3086KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于二氧化锰纳米颗粒具有优异的模拟酶特性,能够高效地催化氧化3,3',5,5'-四甲基联苯胺产生明显的蓝色变化,而谷胱甘肽的加入能够引起二氧化锰的降解从而抑制了基于二氧化锰的显色反应。据此制备了二氧化锰纳米颗粒并且建立了测定谷胱甘肽的比色法,结果表明,在最佳条件下,谷胱甘肽的线性范围为8~70 μmol/L,并且表现出了良好的选择性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李玲芳
尹俊霞
贾桥
马翔
王琦
关键词:  二氧化锰  纳米颗粒  模拟酶  比色法  谷胱甘肽    
Abstract: Manganese dioxide nanoparticles (MnO2 NPs) reveal excellent mimetic enzyme performances,and can efficiently catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate an obvious blue change.However,the addition of glutathione (GSH) can induce the decomposition of MnO2 and thus inhibit the color reaction based on MnO2.Therefore,MnO2 NPs are synthesized and a colorimetry method for GSH determination is established.It is turned out that under the optimal conditions,the linear range of glutathione is 8-70 μmol·L-1 with a good selectivity.
Key words:  manganese dioxide    nanoparticles    mimetic enzyme    colorimetry    glutathione
收稿日期:  2019-10-30      修回日期:  2020-06-01          
O65  
通讯作者:  王琦(1987-),男,硕士,讲师,研究方向为纳米材料光谱分析,通讯联系人,wangqitit@163.com。    E-mail:  wangqitit@163.com
作者简介:  李玲芳(1998-),女,本科生
引用本文:    
李玲芳, 尹俊霞, 贾桥, 马翔, 王琦. 二氧化锰纳米颗粒比色法测定谷胱甘肽[J]. 现代化工, 2020, 40(8): 218-220,226.
LI Ling-fang, YIN Jun-xia, JIA Qiao, MA Xiang, WANG Qi. Determination of glutathione by manganese dioxide nanoparticles based colorimetry. Modern Chemical Industry, 2020, 40(8): 218-220,226.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.08.048  或          https://www.xdhg.com.cn/CN/Y2020/V40/I8/218
[1] Hwang C S,Sinskey A J,Lodish H F.Oxidized redox state of glutathione in the endoplasmic-reticulum[J].Science,1992,257(5076):1496-1502.
[2] Kanzok S,Schirmer R H,Turbachova I,et al.The thioredoxin system of the malaria parasite Plasmodium falciparum-Glutathione reduction revisited[J].J Biol Chem,2000,275(51):40180-40186.
[3] Estrela J M,Ortega A,Obrador E.Glutathione in cancer biology and therapy[J].Crit Rev Clin Lab Sci,2006,43(2):143-181.
[4] Chauhan A,Chauhan V.Oxidative stress in autism[J].Pathophysiology,2006,13(3):171-181.
[5] Feng Y,Zhang L C,Liu R,et al.Modulating near-infrared persistent luminescence of core-shell nanoplatform for imaging of glutathione in tumor mouse model[J].Biosens Bioelectron,2019,144:111671.
[6] He D,Yang X,He X,et al.A sensitive turn-on fluorescent probe for intracellular imaging of glutathione using single-layer MnO2 nanosheet-quenched fluorescent carbon quantum dots[J].Chem Commun,2015,51(79):14764-14767.
[7] Sun X N,Heinrich P,Berger R S,et al.Quantification and C-13-Tracer analysis of total reduced glutathione by HPLC-QTOFMS/MS[J].Anal Chim Acta,2019,1080:127-137.
[8] Areias M C C,Shimizu K,Compton R G,et al.Voltammetric detection of glutathione:An adsorptive stripping voltammetry approach[J].Analyst,2016,141(10):2904-2910.
[9] Wei C H,Liu X,Gao Y,et al.Thiol-disulfide exchange reaction for cellular glutathione detection with surface-enhanced Raman scattering[J].Anal Chem,2018,90(19):11333-11339.
[10] Tang Y R,Song H J,Su Y Y,et al.Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids[J].Anal Chem,2013,85(24):11876-11884.
[11] Wang Q,Liu X,Zhang L C,et al.Microwave-assisted synthesis of carbon nanodots through an eggshellmembrane and their fluorescent application[J].Analyst,2012,137(22):5392-5397.
[12] Qin J,Zhang L M,Yang R.Powder carbonization to synthesize novel carbon dots derived from uric acid for the detection of Ag(Ⅰ) and glutathione[J].Spectrochim Acta Part A,2019,207:54-60.
[13] 徐琴,魏焕平,胡效亚.基于ZnS量子点荧光淬灭-恢复方法测定还原型谷胱甘肽[J].分析化学,2013,41(7):1102-1106.
[14] 王媛,陈潇潇,刘学良,等.选择性检测谷胱甘肽的荧光探针[J].影像科学与光化学,2018,35(4):536-545.
[15] Yuan Y,Zhang J,Wang M J,et al.Detection of glutathione in vitro and in cells by the controlled self-Assembly of nanorings[J].Anal Chem,2013,85(3):1280-1284.
[16] 景蓓蓓,杨晓红,张胜海,等.基于钙黄绿素的荧光分光光度法测定谷胱甘肽[J].现代生物医学进展,2011,11(7):1359-1362.
[17] 郑希帆,沈江涛,段超,等.分光光度法结合抗干扰补偿检测谷胱甘肽[J].分析测试学报,2015,34(6):670-675.
[18] Liu X,Wang Q,Zhao H,et al.BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics[J].Analyst,2012,137(19):4552-4558.
[19] Wang Q,Zhang Y,Wang X,et al.Dual role of BSA for synthesis of MnO2 nanoparticles and their mediated fluorescent turn-onprobe for glutathione determination and cancercell recognition[J].Analyst,2019,144(6):1988-1994.
[20] Deng R,Xie X,Vendrell M,et al.Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles[J].J Am Chem Soc,2011,133(50):20168-20171.
[1] 关桦楠, 彭勃, 龚德状, 薛悦, 张娜, 刘晓飞. 基于金磁微粒模拟酶催化法检测过氧化氢的研究[J]. 现代化工, 2020, 40(7): 230-234.
[2] 李书典, 郑德山, 郭峰. 二氧化锰催化氧化性能的研究进展[J]. 现代化工, 2020, 40(3): 52-56.
[3] 龚德状, 关桦楠, 韩博林, 宋岩, 刘晓飞, 张娜. 磁性石墨烯复合纳米粒子的制备及其检测过氧化氢的应用研究[J]. 现代化工, 2019, 39(9): 77-81.
[4] 丁秦, 关昌峰, 左夏华, 阎华, 杨卫民, 安瑛. 中华墨纳米颗粒在太阳能海水蒸馏中的应用[J]. 现代化工, 2019, 39(8): 89-92.
[5] 朱磊, 俞泽民, 周子豪, 朱明亮. 一步水热法制备二氧化钛纳米线-还原氧化石墨烯复合材料及其超级电容器性能研究[J]. 现代化工, 2019, 39(5): 146-150.
[6] 关文学, 王三反, 郑洋洋, 张倩倩, 杜晗. 离子交换膜组合工艺制备金属锰和二氧化锰[J]. 现代化工, 2019, 39(11): 168-170,174.
[7] 张秀娟, 刘红艳, 张海荣, 张冠华. 功能化金纳米颗粒对湖水样品中Pb2+的检测研究[J]. 现代化工, 2018, 38(7): 236-238.
[8] 黄海波, 沈勇, 杨明荣, 徐丽慧, 王黎明, 王海洋. 海胆状MnO2/RGO复合材料的制备及吸波性能研究[J]. 现代化工, 2018, 38(6): 154-157,159.
[9] 胡莹, 马桃林. 纳米材料模拟酶的研究进展[J]. 现代化工, 2018, 38(3): 71-75.
[10] 孙锦, 蒋文龙, 何会泉, 刘芳, 高凤苑, 蓝平. 淀粉纳米颗粒的制备及其作为药物载体的研究进展[J]. 现代化工, 2018, 38(2): 61-65.
[11] 韩香莲, 陈学玺. 气液双相强化的湿式氧化锰循环烟气脱硝研究[J]. 现代化工, 2018, 38(1): 165-168,170.
[12] 尹红, 高红, 孙津生, 曹希佳. 耐高温多孔Au@NiO的制备与实验研究[J]. 现代化工, 2017, 37(9): 110-113.
[13] 王春雨, 侯永江, 李博, 闫妍. 纳米二氧化锰制备方法的研究进展[J]. 现代化工, 2016, 36(4): 13-17.
[14] 邹彬, 韦诗宇, 陈学珊, 夏姣姣, 霍书豪. 固定化金属卟啉载体材料的研究进展[J]. 现代化工, 2016, 36(4): 57-60.
[15] 王孝华, 聂兴兴. PVA/CaF2纳米复合薄膜的合成、表征及光学性质[J]. 现代化工, 2014, 34(2): 71-73,75.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn