Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (7): 160-165    DOI: 10.16606/j.cnki.issn0253-4320.2020.07.034
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
磁性生物炭对镉、砷的吸附效果研究
李景心, 唐东山, 许婉冰, 王宝茹
南华大学资源环境与安全工程学院, 衡阳市土壤污染控制与修复重点实验室, 湖南 衡阳 421001
Adsorption effect of cadmium and arsenic by magnetic biochar
LI Jing-xin, TANG Dong-shan, XU Wan-bing, WANG Bao-ru
Hengyang Key Laboratory for Soil Contamination Control and Remediation Technology, Resource Environment and Safety Engineering College, University of South China, Hengyang 421001, China
下载:  PDF (4418KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 用Fe3O4对谷壳生物炭进行改性得到磁性生物炭。利用SEM、XRD对磁性生物炭进行表征,并通过响应面优化和共吸附实验探究该生物炭在共吸附系统中对As3+和Cd2+的吸附性能。结果表明,在pH为5.0、镉(砷)初始质量浓度分别为10 mg/L、吸附剂质量浓度为1 g/L时,镉和砷去除率达到最大。在共吸附实验中,As3+和Cd2+共存时,Cd2+质量浓度大于20 mg/L时会抑制生物炭对As3+的吸附,10 mg/L As3+与生物炭达到平衡后可以使50 mg/L Cd2+的吸附量由17.44 mg/g增加到31.91 mg/g,说明砷和镉之间存在协同作用,该协同作用是由于镉、砷与四氧化三铁形成了B型三元表面配合物,增大了镉的吸附量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李景心
唐东山
许婉冰
王宝茹
关键词:  磁性生物炭  响应面优化      吸附    
Abstract: Fe3O4 is used to modify husk biochar to obtain magnetic biochar.The obtained biochar is characterized by SEM and XRD.Response surface optimization and co-adsorption experiments are conducted to investigate the adsorption performance of the biochar to As3+ and Cd2+ in the co-adsorption system.The results show that the removal rates of the biochar to cadmium and arsenic respectively reach the highest when pH is 5.0,initial mass concentration of As3+ or Cd2+ is 10 mg·L-1 and adsorbent dosage is 1 g·L-1.In As3+/Cd2+co-adsorption experiment,when the mass concentration of Cd2+ ix more than 20 mg·L-1,it can inhibit the adsorption of As3+ by the biochar,the adsorption capacity of the biochar to 50 mg·L-1 Cd2+ increases from 17.44 mg·g-1 to 31.91 mg·g-1 after the pre-equilibrium between 10 mg·L-1 As3+ and the biochar,indicating there is a synergistic adsorption effect between arsenic and cadmium.This synergistic effect is due to the formation of B-type ternary surface complexes of Cd,As and Fe3O4,which can increase the adsorption capacity of cadmium.
Key words:  magnetic biochar    response surface optimization    cadmium    arsenic    adsorption
收稿日期:  2019-09-23      修回日期:  2020-05-06          
ZTFLH:  X703  
基金资助: 南华大学双一流建设项目(2017SYL05);衡阳市土壤污染控制与修复重点实验室项目(2018HPT06)
通讯作者:  唐东山(1967-),男,博士,副教授,主要从事环境生物技术、环境微生物学研究,通讯联系人,445430009@qq.com。    E-mail:  445430009@qq.com
作者简介:  李景心(1995-),女,硕士研究生,研究方向为废水处理新技术与新材料,1494606918@qq.com
引用本文:    
李景心, 唐东山, 许婉冰, 王宝茹. 磁性生物炭对镉、砷的吸附效果研究[J]. 现代化工, 2020, 40(7): 160-165.
LI Jing-xin, TANG Dong-shan, XU Wan-bing, WANG Bao-ru. Adsorption effect of cadmium and arsenic by magnetic biochar. Modern Chemical Industry, 2020, 40(7): 160-165.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.07.034  或          https://www.xdhg.com.cn/CN/Y2020/V40/I7/160
[1] Li R,Liang W,Huang H,et al.Removal of cadmium(Ⅱ) cations from an aqueous solution with aminothiourea chitosan strengthened magnetic biochar[J].Journal of Applied Polymer Science,2018,135(19):46239-46249.
[2] Qiu Y,Zhang Q,Li M,et al.Adsorption of Cd(Ⅱ) from aqueous solutions by modified biochars:Comparison of modification methods[J].Water,Air & Soil Pollution,2019,230(4):84-94.
[3] 王在兴.废水中的重金属处理方法分析[J].环境与发展,2019,31(1):77-79.
[4] 廖家隆,张喆秋,陈丽杰,等.含砷废水处理研究进展[J].有色金属科学与工程,2018,9(1):86-91.
[5] 沈懿静.污水重金属去除研究进展[J].科学技术创新,2018,(12):25-27.
[6] Luo L,Ma C,Ma Y,et al.New insights into the sorption mechanism of cadmium on red mud[J].Environmental Pollution,2011,159(5):1108-1113.
[7] 司凤霞,于丽红.农业废弃物综合利用方法和途径[J].现代农业,2019,511(1):83-84.
[8] Bera T,Purakayastha T J,Patra A K,et al.Comparative analysis of physicochemical,nutrient,and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures[J].Journal of Material Cycles and Waste Management,2017,20(2):1115-1127.
[9] 朱司航,赵晶晶,尹英杰,等.针铁矿改性生物炭对砷吸附性能[J].环境科学,2019,40(6):2773-2782.
[10] 吴文卫,周丹丹.生物炭老化及其对重金属吸附的影响机制[J].农业环境科学学报,2019,38(1):13-19.
[11] 李杰,高洪涛.壳聚糖复合磁性生物炭吸附去除水中Cu2+的性能和机理[J].青岛科技大学学报:自然科学版,2018,39(2):16-20.
[12] 胡学玉,陈窈君,张沙沙,等.磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J].农业工程学报,2018,34(19):208-218.
[13] O'Laughlin J,Mcelligott K.Biochar for environmental management:Science and technology,Johannes lehmann stephen M.Joseph Earthscan,London UK (2009),448 p[J].Forest Policy & Economics,2009,11(7):535-536.
[14] 李莉,张赛,何强,等.响应面法在试验设计与优化中的应用[J].实验室研究与探索,2015,34(8):41-45.
[15] Han Z,Sani B,Mrozik W,et al.Magnetite impregnation effects on the sorbent properties of activated carbons and biochars[J].Water Research,2015,70:394-403.
[16] Wang H Y,Chen P,Zhu Y G,et al.Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil[J].Environmental Science and Pollution Research,2019,26(9):8575-8584.
[17] Wang S,Gao B,Zimmerman A R,et al.Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J].Bioresource Technology,2015,175:391-395.
[18] Reguyal F,Sarmah A K.Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar[J].Environmental Pollution,2017,233:510-519.
[19] Ren X,Yang S,Tan X,et al.Mutual effects of copper and phosphate on their interaction with γ-Al2O3:Combined batch macroscopic experiments with DFT calculations[J].Journal of Hazardous Materials,2012,237-238:199-208.
[20] Hu S,Yan L,Chan T S,et al.Molecular insights into ternary surface complexation of arsenite and cadmium on TiO2[J].Environmental Science & Technology,2015,49(10):5973-5979.
[21] Uheida A,Salazar-Alvarez G,Björkman,Eva,et al.Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution[J].Journal of Colloid and Interface Science,2006,298:501-507.
[1] 杨湘智, 周浩, 梅皓天, 张雨, 张猛, 林匡飞. 螯合型表面活性剂修复石油-镉复合污染土壤研究[J]. 现代化工, 2020, 40(7): 74-78.
[2] 冼学权, 杜芳黎, 唐培朵, 顾传君, 黎演明. 木质素基超高比表面积活性炭的制备及其吸附性能[J]. 现代化工, 2020, 40(7): 90-94.
[3] 郭宇, 苗世举, 吴红梅, 肖昱. NH2-MCM-41吸附剂的制备及其对铬离子(Ⅵ)吸附行为的研究[J]. 现代化工, 2020, 40(6): 89-94.
[4] 高君安, 李想, 史东军, 曲令多, 张傑. ZSM-5分子筛蜂窝状成型工艺及其吸附甲苯的性能研究[J]. 现代化工, 2020, 40(6): 123-127.
[5] 鲁逸飞, 王黎, 李钰琦, 覃刘平, 余杨. 新型磁性氧化石墨烯的制备及其对Cd2+的吸附性能[J]. 现代化工, 2020, 40(5): 137-142.
[6] 王波, 熊芸, 吴广文, 熊泽, 朱韧. 铁掺杂生物质衍生碳电催化深度处理精制棉废水的研究[J]. 现代化工, 2020, 40(5): 176-180.
[7] 张晓婉, 李巧玲. 混合塑料与改性煤矸石模板制备多孔碳材料及其吸附性能的研究[J]. 现代化工, 2020, 40(5): 194-198.
[8] 叶磊, 汪成, 黄英杰, 刘纪昌, 沈本贤, 孙辉. 模拟移动床吸附分离对甲乙苯工艺[J]. 现代化工, 2020, 40(5): 199-203,207.
[9] 齐璞, 刘学武, 陈淑花, 邹久朋. 硫化铜脱汞剂的制备及脱汞性能研究[J]. 现代化工, 2020, 40(4): 94-98.
[10] 刘伟, 田林宇, 王宪飞, 陈小平, 任万忠. 金属有机框架材料分离碳四烃的研究进展[J]. 现代化工, 2020, 40(3): 16-21.
[11] 邱海燕, 王舰苇, 薛松松, 鲁莹纯, 金李, 徐波. 改性纤维素高吸水树脂对Cu2+、Pb2+的吸附性能研究[J]. 现代化工, 2020, 40(3): 176-180,185.
[12] 张胜中, 张英, 范得权, 张延鹏, 高明. 炼厂氢制取燃料电池级氢气技术研究[J]. 现代化工, 2020, 40(3): 208-211.
[13] 沈天洋, 何红军, 刘作松, 潘兴祥, 杜泽宇, 梅华, 朱明. 10 MPa日产千吨冷凝法吸附法耦合分离氨的氨合成工艺模拟[J]. 现代化工, 2020, 40(3): 212-216.
[14] 武宁, 杨忠凯, 李玉, 李涛, 任保增. 挥发性有机物治理技术研究进展[J]. 现代化工, 2020, 40(2): 17-22.
[15] 范庆文, 李岩, 华栋梁, 许海朋, 牧辉. 水热液化废水厌氧处理研究进展[J]. 现代化工, 2020, 40(2): 23-27.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn