Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (4): 104-109    DOI: 10.16606/j.cnki.issn0253-4320.2020.04.023
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
分层状多孔SiO2负载Ni基催化剂用于甲烷二氧化碳重整反应的研究
孟昭俊, 王自军
石河子大学化学化工学院, 新疆兵团化工绿色过程重点实验室-省部共建国家重点实验室培育基地, 新疆 石河子 832003
Hierarchical layered porous SiO2 supported Ni-based catalyst for methane reforming reaction
MENG Zhao-jun, WANG Zi-jun
Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
下载:  PDF (4673KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以"膨胀-酸化"改性处理蛭石(VTM)制备的二维层状多孔纳米片(EXVTM-SiO2)为载体,采用浸渍法制备负载量不同的Ni/EXVTM-SiO2催化剂用于甲烷重整反应。通过BET、XRD、XRF、SEM、H2-TPR、TEM、TG等对催化剂进行表征,在常压750℃条件下进行300 min稳定性实验。结果表明,10% Ni/EXVTM-SiO2表现出较好的催化活性及稳定性,其CO2、CH4的初始转化率分别为92%、55%。这主要是由于10% Ni/EXVTM-SiO2催化剂具有大的比表面积、较好的金属分散性,从而使催化剂具有一定的抗积碳和抗烧结性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟昭俊
王自军
关键词:  膨胀-酸化  甲烷重整  蛭石  层状多孔SiO2  镍基催化剂    
Abstract: Vermiculite (VTM) is modified by "expansion-acidification" to prepare two-dimensional layered porous nanosheets (EXVTM-SiO2),which are used as support to prepare Ni/EXVTM-SiO2 catalysts with different loading amounts for methane reforming reaction by means of impregnation method.The catalysts are characterized by BET,XRD,XRF,SEM,H2-TPR,TEM and TG techniques,and the stability experiment for the catalysts has been carried out under atmospheric pressure at 750℃ for 300 min.Experimental results show that 10%Ni/VTM-SiO2 exhibits a better catalytic activity and stability,over which the initial conversion rates of CO2 and CH4 are 92% and 55%,respectively.The main reason is that 10%Ni/EXVTM-SiO2 catalyst has a larger specific surface area and better metal dispersion,so that it has a certain degree of carbon deposition and sintering resistance.
Key words:  expansion-acidification    CH4 reforming    vermiculite    layered porous SiO2    nickel-based catalysts
收稿日期:  2019-06-27      修回日期:  2020-02-05          
TQ426.8  
  O643  
基金资助: 国家自然科学基金(21766029,21566031)
通讯作者:  王自军(1971-),男,博士,副教授,研究方向为环境友好催化技术和催化反应技术,通讯联系人,wzj_tea@shzu.edu.cn。    E-mail:  wzj_tea@shzu.edu.cn
作者简介:  孟昭俊(1992-),男,硕士研究生,研究方向为工业催化,mengzhaojun_stu@163.com
引用本文:    
孟昭俊, 王自军. 分层状多孔SiO2负载Ni基催化剂用于甲烷二氧化碳重整反应的研究[J]. 现代化工, 2020, 40(4): 104-109.
MENG Zhao-jun, WANG Zi-jun. Hierarchical layered porous SiO2 supported Ni-based catalyst for methane reforming reaction. Modern Chemical Industry, 2020, 40(4): 104-109.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.04.023  或          https://www.xdhg.com.cn/CN/Y2020/V40/I4/104
[1] Akbari E,Alavi S M,Rezaei M,et al.Synthesis gas production over highly active and stable nanostructured Ni-MgO-Al2O3 catalysts in dry reforming of methane:Effects of Ni contents[J].Fuel,2017,194:171-179.
[2] Usman M,Daud W M A Wan,Abbas H F,et al.Dry reforming of methane:Influence of process parameters-A review[J].Renewable and Sustainable Energy Reviews,2015,45:710-744.
[3] Cui W G,Zhang G Y,Hu T L,et al.Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry:CO,CO2 and CH4[J].Coordination Chemistry Reviews,2019,387:79-120.
[4] Chen J H,Arandiyan H,Gao X,et al.Recent advances in catalysts for methane combustion[J].Catalysis Surveys from Asia,2015,19(3):140-171.
[5] Kang X,Guo X,You H,et al.The economic and social benefit of C1 utilization in china[J].Energy Sources,Part B:Economics,Planning,and Policy,2015,10(2):111-119.
[6] Al-Fatesh A,Singh S K,Kanade G S,et al.Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts:High activity for CO2 reforming,steam-CO2 reforming and oxy-CO2 reforming of CH4[J].International Journal of Hydrogen Energy,2018,43(27):12069-12080.
[7] Park J H,Yeo S,HeO I,et al.Promotional effect of Al addition on the Co/ZrO2 catalyst for dry reforming of CH4[J].Applied Catalysis A:General,2018,562:120-131.
[8] Chotirach M,Tungasmita S,Nuntasri Tungasmita D,et al.Titanium nitride promoted Ni-based SBA-15 catalyst for dry reforming of methane[J].International Journal of Hydrogen Energy,2018,43(46):21322-21332.
[9] Xie Z H,Yan B H,Kattel S,et al.Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity[J].Applied Catalysis B:Environmental,2018,236:280-293.
[10] Senseni A Z,Rezaei M,Meshkani F,et al.Glycerol steam reforming over noble metal nanocatalysts[J].Chemical Engineering Research and Design,2017,123:360-366.
[11] Yue L,Li J M,Chen C,et al.Thermal-stable Pd@mesoporous silica core-shell nanocatalysts for dry reforming of methane with good coke-resistant performance[J].Fuel,2018,218:335-341.
[12] Kim S M,Abdala P M,Margossian T,et al.Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J].Journal of the American Chemical Society,2017,139(5):1937-1949.
[13] Song K,Lu M,Xu S,et al.Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane[J].Applied Catalysis B:Environmental,2018,239:324-333.
[14] Das Subhasis,Sengupta Manideepa,Bag Arijit,et al.Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming[J].Nanoscale,2018,10(14):6409-6425.
[15] Al-Doghachi F A J,Rashid U,Zainal Z,et al.Influence of Ce2O3 and CeO2 promoters on Pd/MgO catalysts in the dry-reforming of methane[J].RSC Advances,2015,5(99):81739-81752.
[16] Park J H,Yeo S,Chang T S,et al.Effect of supports on the performance of Co-based catalysts in methane dry reforming[J].Journal of CO2 Utilization,2018,26:465-475.
[17] Ma Q,Sun J,Gao X,et al.Ordered mesoporous alumina-supported bimetallic Pd-Ni catalysts for methane dry reforming reaction[J].Catalysis Science & Technology,2016,6(17):6542-6550.
[18] Zhang R,XIA G,Li M,et al.Effect of support on the performance of Ni-based catalyst in methane dry reforming[J].Journal of Fuel Chemistry and Technology,2015,43(11):1359-1365.
[19] Gao X Q,Lu W D,Hu S Z,et al.Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J].Chinese Journal of Catalysis,2019,40(2):184-191.
[20] Mousavi S M,Meshkani F,Rezaei M,et al.Preparation of nanocrystalline Zr,La and Mg-promoted 10% Ni/Ce0.95Mn0.05O2 catalysts for syngas production via dry reforming reaction[J].International Journal of Hydrogen Energy,2018,43(13):6532-6538.
[21] Cao Y,Maitarad P,Gao M,et al.Defect-induced efficient dry reforming of methane over two-dimensional Ni/h-boron nitride nanosheet catalysts[J].Applied Catalysis B:Environmental,2018,238:51-60.
[1] 田维亮, 葛振红, 穆金城, 陈明鸽, 李秀敏, 王秋玉, 曹婉婧. 天然蛭石PVC热稳定剂的制备和性能研究[J]. 现代化工, 2018, 38(9): 72-76.
[2] 胡晓丽, 孙利民, 马好文, 梁顺琴, 管信泽, 刘德华. 裂解汽油一段加氢镍基催化剂在国内大型乙烯的工业应用[J]. 现代化工, 2017, 37(5): 162-165.
[3] 郑小刚, 宋玉春, 李江华, 王姝羡, 李子黎, 由耀辉, 付孝锦. CH4/CO2催化重整镍基催化剂的研究进展[J]. 现代化工, 2017, 37(3): 72-75.
[4] 张巍, 马磊, 王晓东, 张涛, 朱刚, 牛海宁, 汪涛, 韩同生, 王振飞. 氮气纯化装置用轻质隔热浇注料的研制与应用[J]. 现代化工, 2016, 36(12): 56-58.
[5] 沈朝萍, 陈明强, 刘少敏, 杨忠连, 王一双, 朱传浩. 镧对镍基催化剂催化生物油模型物重整制氢的影响[J]. 现代化工, 2015, 35(8): 133-136.
[6] 黎先财,李水根,杨沂凤,曹小华. 载体对镍基催化剂CH4/CO2重整反应性能的影响[J]. , 2007, 27(8): 0-0.
[7] 胡长员,段武茂,李凤仪,张荣发,何向明,刘庭芝. 碳纳米管负载镍基催化剂上乙炔选择性加氢[J]. , 2007, 27(8): 0-0.
[8] 闫艳娇 陈晓春 肖楠. 糠醇加氢制备四氢糠醇的新型镍基催化剂[J]. , 2004, 24(13): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn