Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (4): 94-98    DOI: 10.16606/j.cnki.issn0253-4320.2020.04.021
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
硫化铜脱汞剂的制备及脱汞性能研究
齐璞1, 刘学武1, 陈淑花2, 邹久朋1
1. 大连理工大学化工机械与安全学院, 辽宁 大连 116024;
2. 大连大学环境与化学工程学院, 辽宁 大连 116622
Preparation of copper sulfide for removing mercury and study on its properties
QI Pu1, LIU Xue-wu1, CHEN Shu-hua2, ZOU Jiu-peng1
1. School of Chemical Machinery and Safety Engineering, Dalian University of Technology, Dalian 116024, China;
2. College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
下载:  PDF (2047KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化铝分子球为载体、硫化铜为活性物质,采用浸渍工艺制备了硫化铜脱汞剂。利用固定床汞吸附装置研究了铜盐浓度、浸渍比、焙烧温度及烘干温度等工艺参数对硫化铜脱汞剂脱汞性能的影响,结合XPS对制备的各个步骤中前驱体有效成分进行了表征。实验结果表明,铜盐质量分数为15%、浸渍比为60 mL铜盐溶液:20 g氧化铝、焙烧温度为150℃及烘干温度为30℃时,实验制备得到的硫化铜脱汞剂脱汞性能最佳,汞容达到8.925×10-4 g/g。其脱汞性能随焙烧温度、铜盐质量分数和浸渍比的增大先升后降,随烘干温度升高持续降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐璞
刘学武
陈淑花
邹久朋
关键词:    浸渍法  硫化铜  天然气  汞吸附量    
Abstract: Copper sulfide for removing mercury is prepared through impregnation process with alumina molecular ball as carrier and copper sulfide as active substance,and the effective components of precursors in each step of preparation are characterized by XPS.The influences of technological parameters such as copper salt concentration,impregnation ratio,calcination and drying temperature on the performance of copper sulfide for removing mercury are studied in a fixed bed mercury adsorption device.Experimental results show that the prepared copper sulfide exhibits the best performance in removing mercury,with a mercury capacity of 8.925×10-4 g·g-1 when the copper salt concentration is 15%,the impregnation ratio is 60 ml of copper salt solution to 20 g of alumina,the calcination temperature maintains at 150℃ and the drying temperature is at 30℃.The mercury-removing performance of copper sulfide increases at first and decreases later with the rising calcination temperature,copper salt concentration and immersion ratio,but continuously decreases with the increase of drying temperature.
Key words:  Hg0    impregnation method    copper sulfide    natural gas    adsorption capacity to mercury
收稿日期:  2019-05-31      修回日期:  2020-02-06          
TH3  
基金资助: 国家自然科学基金资助项目(21776029);大连市科技创新基金资助(2018J12GX059)
通讯作者:  刘学武(1974-),男,博士,副教授,研究方向为天然气净化及分离,通讯联系人,liuxuewu@dlut.edu.cn。    E-mail:  liuxuewu@dlut.edu.cn
作者简介:  齐璞(1992-),男,硕士研究生,研究方向为天然气净化脱汞,312824350@qq.com
引用本文:    
齐璞, 刘学武, 陈淑花, 邹久朋. 硫化铜脱汞剂的制备及脱汞性能研究[J]. 现代化工, 2020, 40(4): 94-98.
QI Pu, LIU Xue-wu, CHEN Shu-hua, ZOU Jiu-peng. Preparation of copper sulfide for removing mercury and study on its properties. Modern Chemical Industry, 2020, 40(4): 94-98.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.04.021  或          https://www.xdhg.com.cn/CN/Y2020/V40/I4/94
[1] Amin Chemrak M,Benderdouche N,Bestani B,et al.Removal of mercury from natural gas by a new activated adsorbent from olive stones[J].The Canadian Journal of Chemical Engineering,2017,96(1):241-249.
[2] 蒋洪,梁金川,严启团,等.天然气脱汞工艺技术[J].石油与天然气化工,2011,40(1):26-31.
[3] Hsi H,Chen S G,Rostam-Abadi M,et al.Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue gases[J].Energy Fuel,1998,12(6):1061-1070.
[4] Lei J,Abu-Daabes M,Pinto N G.Thermally robust chelating adsorbents for the capture of gaseous mercury:Fixed-bed behavior[J].Chemical Engineering Science,2009,64(3):486-491.
[5] Mahmoud A E E,Nabawi M H,Ahmed A A.Behavior of the mercury removal absorbents at egyptian gas plant[C]//Society of Petroleum Engineers,2008.
[6] Wilhelm S M,Bloom N.Mercury in petroleum[J].Fuel Processing Technology,2000,63(1):1-27.
[7] Ezzeldin M F,Gajdosechova Z,Masod M B,et al.Mercury speciation and distribution in an Egyptian natural gas processing plant[J].Energy & Fuels,2016,30(12):10236-10243.
[8] Abbas T,et al.Developments in mercury removal from natural Gas-A short review[J].Applied Mechanics and Materials,2014,625:223-228.
[9] Spiric Z.Innovative approach to the mercury control during natural gas processing[C].Engineering Technology Conference on Energy,2001.
[10] Faramawy S,Zaki T,Sakr A E.Natural gas origin,composition,and processing:A review[J].Journal of Natural Gas Science and Engineering,2016,34(1):34-54.
[11] 蒋洪,刘支强,严启团,等.天然气低温分离工艺中汞的分布模拟[J].天然气工业,2011,31(3):80-84.
[12] Echt,William,Meister,et al.Design,fabrication and startup of an offshore membrane CO2 removal system[C].88th Annual Convention-UOP LLC.Gas Processors Association,2009.
[13] Johnson Matthey Catalysts.PURASPECJMTM 1157 combined H2S & mercury removal[R].Billingham:Johnson Matthey Catalysts,2007.
[14] Spencer J Washburn,Joel D Isotopic.Characterization of mercury in natural gas via analysis of mercury removal unit catalysts[J].ACS Earth and Space Chemistry,2018,2(5):462-470.
[15] Jubin C,Ducreux O.Mercury removal units operation at front-end location[J].Journal of Aerosol Medicine the Official Journal of the International Society for Aerosols in Medicine,2014,19(3):803-807.
[16] 牛瑞.天然气脱汞剂开发及现场试验[D].成都:西南石油大学,2016.
[1] 岳彩霞, 王建成, 韩丽娜. 煤气脱汞用新型吸附剂的研究进展[J]. 现代化工, 2020, 40(2): 32-35.
[2] 任赏赏, 刘学武, 陈淑花, Delphine Mukamurara, 邹久朋. 氧化铜脱汞剂的制备及其脱汞研究[J]. 现代化工, 2020, 40(2): 132-136,142.
[3] 蒋洪, 王金波, 单永康, 杨东磊. 基于回归正交试验设计的三甘醇脱水装置能耗优化[J]. 现代化工, 2020, 40(1): 215-219.
[4] 李倩, 敖先权, 陈前林, 曹阳, 吕记巍. Ce-Cu/ZnAl水滑石复合脱氢催化剂的制备及其合成邻苯基苯酚的催化性能[J]. 现代化工, 2019, 39(8): 83-88.
[5] 常军, 王子阳, 张泽彪. 含汞加压浸出锌渣浮选硫精矿中分离富集有价元素的工艺研究[J]. 现代化工, 2019, 39(8): 147-151.
[6] 肖铭, 李燕, 管凤宝, 张述伟. 液氮洗联产LNG工艺模拟与改良[J]. 现代化工, 2019, 39(8): 216-220.
[7] 赵德银, 姚彬, 汤晟, 黎志敏. 塔河油田二号联轻烃站有机硫脱除工艺研究与应用[J]. 现代化工, 2019, 39(7): 194-197.
[8] 梁平, 宋冬寒, 文明, 陈艺为, 胡连兴, 付显朝, 李梦莹, 陈晓宇. 基于ProMax的高含硫天然气脱硫装置模拟与优化[J]. 现代化工, 2019, 39(7): 202-206,208.
[9] 王海洋, 沈勇, 徐丽慧, 王黎明, 潘虹, 吴敏. 花状CuS微米球的制备及其光催化性能研究[J]. 现代化工, 2019, 39(6): 116-120.
[10] 蒋洪, 杨仁杰, 陈小榆. 天然气脱碳工艺改进[J]. 现代化工, 2019, 39(5): 224-228.
[11] 姜洪殿, 董康银, 王金森, 孙仁金. 我国天然气分布式能源发展对策研究[J]. 现代化工, 2019, 39(5): 14-18.
[12] 赵翔宇, 李梅. Pt/TiO2催化间甲基苯酚加氢脱氧路径探究[J]. 现代化工, 2019, 39(3): 181-184,186.
[13] 蒋洪, 吴昊, 贺江波, 王金山. 天然气脱水脱烃单元汞分布研究[J]. 现代化工, 2019, 39(2): 222-226.
[14] 徐文东, 刘一成, 蔡振培, 丁力. 天然气管网压力能发电技术现状及未来发展方向[J]. 现代化工, 2019, 39(12): 11-15,20.
[15] 刘伟, 崔升, 王哲, 丁彬. 置换法开采天然气水合物用吸附材料研究进展[J]. 现代化工, 2019, 39(11): 53-57.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn