Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (4): 65-68    DOI: 10.16606/j.cnki.issn0253-4320.2020.04.015
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
植物对人工湿地-微生物燃料电池耦合系统去污及产电性能的影响
王洋洋, 赵金辉, 顾佳华, 蒋浩然, 王臻, 赵涵
南京工业大学城市建设学院, 江苏 南京 211800
Effects of plants on pollutants removal and electricity generation performances of constructed wetland-microbial fuel cell coupling system
WANG Yang-yang, ZHAO Jin-hui, GU Jia-hua, JIANG Hao-ran, WANG Zhen, ZHAO Han
College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
下载:  PDF (1607KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 介绍了人工湿地-微生物燃料电池(CW-MFC)的分类,湿地植物对去除污染物和产电性能的有利影响和不利影响,以及CW-MFC植物的选择,并提出了进一步研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洋洋
赵金辉
顾佳华
蒋浩然
王臻
赵涵
关键词:  人工湿地-微生物燃料电池  湿地植物  去除污染物性能  产电性能    
Abstract: This paper introduces the classification of constructed wetland-microbial fuel cell (CW-MFC).The positive and negative effects of wetland plants on pollutant removal and power generation performances are described,and the selection ways of CW-MFC plants are reviewed.Further research direction is suggested.
Key words:  constructed wetland-microbial fuel cell    wetland plants    pollutant-removal performance    electricity production performance
收稿日期:  2019-07-16      修回日期:  2020-02-13          
X703  
通讯作者:  赵金辉(1976-),男,博士,副教授,研究方向为水资源利用及水处理理论与技术,通讯联系人,zjh-huaxian@163.com。    E-mail:  zjh-huaxian@163.com
作者简介:  王洋洋(1995-),男,硕士生
引用本文:    
王洋洋, 赵金辉, 顾佳华, 蒋浩然, 王臻, 赵涵. 植物对人工湿地-微生物燃料电池耦合系统去污及产电性能的影响[J]. 现代化工, 2020, 40(4): 65-68.
WANG Yang-yang, ZHAO Jin-hui, GU Jia-hua, JIANG Hao-ran, WANG Zhen, ZHAO Han. Effects of plants on pollutants removal and electricity generation performances of constructed wetland-microbial fuel cell coupling system. Modern Chemical Industry, 2020, 40(4): 65-68.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.04.015  或          https://www.xdhg.com.cn/CN/Y2020/V40/I4/65
[1] Rabaey K,Verstraete W.Microbial fuel cells:Novel biotechnology for energy generation[J].Trends Biotechnol,2005,23(6):291-298.
[2] Potter M C S D M A.Electrical effects accompanying the decomposition of organic compounds[J].Proceedings of the Royal Society of London,1911,571(84):260-276.
[3] Liu R,Tursun H,Hou X,et al.Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage[J].Bioresource Technology,2017,241:439-447.
[4] Wang Y,Jia H,Wang J,et al.Impacts of energy distribution and electric field on membrane fouling control in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system[J].Bioresource Technology,2018,269:339-345.
[5] Baker R W.Research needs in the membrane separation industry:Looking back,looking forward[J].Journal of Membrane Science,2010,362(1/2):134-136.
[6] 王同悦,Liam Doherty,赵晓红,等.人工湿地/微生物燃料电池技术的发展现状[J].中国给水排水,2015,(17):129-136.
[7] Yadav A K,Dash P,Mohanty A,et al.Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J].Ecological Engineering,2012,47:126-131.
[8] Strik D P B T,Hamelers Bert H V M,Snel J F H,et al.Green electricity production with living plants and bacteria in a fuel cell[J].International Journal of Energy Research,2008,32(9):870-876.
[9] Helder M,Strik D P B T,Hamelers H V M,et al.Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using spartina anglica,Arundinella anomala and Arundo donax[J].Bioresource Technology,2010,101(10):3541-3547.
[10] Timmers R A,Strik D P B T,Hamelers H V M,et al.Long-term performance of a plant microbial fuel cell with Spartina anglica[J].Applied Microbiology and Biotechnology,2010,86(3):973-981.
[11] Wang J,Song X,Wang Y,et al.Bioelectricity generation,contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell[J].Bioresource Technology,2017,245:372-378.
[12] Schamphelaire L D,Bossche L V D,Dang H S,et al.Microbial fuel cells generating electricity from rhizodeposits of rice plants[J].Environmental Science & Technology,2008,42(8):3053-3058.
[13] Fang Z,Song H,Cang N,et al.Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation[J].Bioresource Technology,2013,144:165-171.
[14] Saz Ç,Türe C,Türker O C,et al.Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J].Environmental Science and Pollution Research,2018,25(9):8777-8792.
[15] Oon Y,Ong S,Ho L,et al.Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery[J].Bioresource Technology,2017,224:265-275.
[16] Wang J,Song X,Wang Y,et al.Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell:Establishment of electrochemically active bacteria community on anode[J].Bioresource Technology,2016,221:358-365.
[17] Liu S,Song H,Li X,et al.Power Generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system[J].International Journal of Photoenergy,2013,2013:15158-15166.
[18] Chiranjeevi P,Mohanakrishna G,Venkata Mohan S.Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration[J].Bioresource Technology,2012,124:364-370.
[19] Liu S,Song H,Wei S,et al.Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-microbial fuel cell systems[J].Bioresource Technology,2014,166:575-583.
[20] Zhou Y,Xu D,Xiao E,et al.Relationship between electrogenic performance and physiological change of four wetland plants in constructed wetland-microbial fuel cells during non-growing seasons[J].Journal of Environmental Sciences,2018,70:54-62.
[21] Shen X,Zhang J,Liu D,et al.Enhance performance of microbial fuel cell coupled surface flow constructed wetland by using submerged plants and enclosed anodes[J].Chemical Engineering Journal,2018,351:312-318.
[22] Wang J,Song X,Wang Y,et al.Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J].Science of The Total Environment,2017,607/608:53-62.
[23] Oon Y,Ong S,Ho L,et al.Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery[J].Bioresource Technology,2016,203:190-197.
[24] Wang J,Song X,Wang Y,et al.Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J].Science of The Total Environment,2017,607/608:53-62.
[25] Villase Or J,Capilla P,Rodrigo M A,et al.Operation of a horizontal subsurface flow constructed wetland-microbial fuel cell treating wastewater under different organic loading rates[J].Water Research,2013,47(17):6731-6738.
[26] 黄丹萍,贺锋,肖蕾,等.高氮磷胁迫下菖蒲(Acorus calamus Linn)通气组织和根系释氧的响应[J].湖泊科学,2012,24(1):83-88.
[27] Fang Z,Song H,Cang N,et al.Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J].Biosensors and Bioelectronics,2015,68:135-141.
[1] 卓露, 汪兴兴, 吕帅帅, 黄明宇, 倪红军. 微生物燃料电池技术的研究进展[J]. 现代化工, 2017, 37(8): 41-44.
[2] 向龙, 王晓慧, 海热提, 刘睿, 付进南, 李媛, 徐梦莹. 微生物燃料电池阳极材料的修饰研究进展[J]. 现代化工, 2015, 35(1): 48-52.
[3] 马骏, 陈青青, 裴一, 倪红军. 微生物燃料电池各组件性能及应用研究[J]. 现代化工, 2014, 34(7): 16-19.
[4] 温青,孙茜,赵立新,吴英. 微生物燃料电池对废水中对硝基苯酚的去除[J]. , 2009, 29(4): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn