Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (4): 46-50    DOI: 10.16606/j.cnki.issn0253-4320.2020.04.011
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
药物共晶设计理论及筛选技术研究进展
王飞, 朱亮, 王彦飞, 杨立斌, 赵晓昱, 沙作良
天津科技大学化工与材料学院, 天津 300457
Research progress in design theory and screening technology for pharmaceutical eutectic
WANG Fei, ZHU Liang, WANG Yan-fei, YANG Li-bin, ZHAO Xiao-yu, SHA Zuo-liang
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
下载:  PDF (1335KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 主要从超分子化学角度对虚拟共晶设计理论、超分子合成子设计理论以及基于COSMO-RS计算模型的共晶设计理论等进行了阐述,并对其在共晶设计与筛选中的应用进行了分析与讨论;同时对几种最新的共晶筛选方法进行了简要介绍,并对共晶设计的研究趋势进行了相关展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王飞
朱亮
王彦飞
杨立斌
赵晓昱
沙作良
关键词:  共晶  设计  筛选  纯化    
Abstract: From the perspective of supramolecular chemistry,this paper mainly elucidates the virtual eutectic design theory,the supramolecular synthesizer design theory and the eutectic design theory based on COSMO-RS calculation model.Applications of these theories in eutectic design and screening are also analyzed and discussed.Several latest developed eutectic screening methods are briefly introduced,and the research trend for eutectic design is predicted.
Key words:  eutectic    design    screening    purification
收稿日期:  2019-08-15      修回日期:  2020-02-24          
TQ46  
基金资助: 天津市企业科技特派员项目(18JCTPJC56300)
通讯作者:  朱亮(1980-),男,博士,副教授,研究方向为工业结晶,通讯联系人,zhuliang@tust.edu.cn。    E-mail:  zhuliang@tust.edu.cn
作者简介:  王飞(1994-),男,硕士生
引用本文:    
王飞, 朱亮, 王彦飞, 杨立斌, 赵晓昱, 沙作良. 药物共晶设计理论及筛选技术研究进展[J]. 现代化工, 2020, 40(4): 46-50.
WANG Fei, ZHU Liang, WANG Yan-fei, YANG Li-bin, ZHAO Xiao-yu, SHA Zuo-liang. Research progress in design theory and screening technology for pharmaceutical eutectic. Modern Chemical Industry, 2020, 40(4): 46-50.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.04.011  或          https://www.xdhg.com.cn/CN/Y2020/V40/I4/46
[1] Kumar S.Pharmaceutical cocrystals:An overview[J].Indian Journal of Pharmaceutical Sciences,2018,79(6):858-871.
[2] Ma X,Huang S,Lowinger M B,et al.Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion:Preparation and physical stability[J].International Journal of Pharmaceutics,2019,561:324-334.
[3] Guthrie S M,Smilgies D M,Giri G.Controlling polymorphism in pharmaceutical compounds using solution shearing[J].Crystal Growth & Design,2018,18(2):602-606.
[4] Fu Q,Lu H D,Xie Y F,et al.Salt formation of two BCS Ⅱ drugs (indomethacin and naproxen) with (1R,2R)-1,2-diphenylethylenediamine:Crystal structures,solubility and thermodynamics analysis[J].Journal of Molecular Structure,2019,1185:281-289.
[5] Khandavilli U B R,Gangavaram S,Goud N R,et al.High solubility crystalline hydrates of Na and K furosemide salts[J].Cryst Eng Comm,2014,16(22):4842-4852.
[6] Boothroyd S,Kerridge A,Broo A,et al.Why do some molecules form hydrates or solvates?[J].Crystal Growth & Design,2018,18(3):1903-1908.
[7] Bolla G,Nangia A.Pharmaceutical cocrystals:Walking the talk[J].Chemical Communications,2016,52(54):8342-8360.
[8] Ranjan S,Devarapalli R,Kundu S,et al.Three new hydrochlorothiazide cocrystals:Structural analyses and solubility studies[J].Journal of Molecular Structure,2017,1133:405-410.
[9] Yamashita H,Sun C C.Improving dissolution rate of carbamazepine-glutaric acid cocrystal through solubilization by excess coformer[J].Pharmaceutical Research,2017,35(1).https://xs.scihub.ltd/https://doi.org/10.1007/s11095-017-2309-x.
[10] Emami S,Siahi-Shadbad M,Adibkia K,et al.Recent advances in improving oral drug bioavailability by cocrystals[J].BioImpacts:BI,2018,8(4):305-320.
[11] Yoshimura M,Miyake M,Kawato T,et al.Impact of the dissolution profile of the cilostazol cocrystal with supersaturation on the oral bioavailability[J].Crystal Growth & Design,2017,17(2):550-557.
[12] Sopyan I,Fudholi A,Muchtaridi M,et al.Simvastatin-nicotinamide co-crystal:Design,preparation and preliminary characterization[J].Tropical Journal of Pharmaceutical Research,2017,16(2):297-303.
[13] Duggirala N K,Frericks Schmidt H L,Lei Z,et al.Solid-state characterization and relative formation enthalpies to evaluate stability of cocrystals of an antidiabetic drug[J].Molecular Pharmaceutics,2018,15(5):1901-1908.
[14] Hsi K H Y,Concepcion A J,Kenny M,et al.Purification of amoxicillin trihydrate by impurity-coformer complexation in solution[J].Cryst Eng Comm,2013,15(34):6776-6781.
[15] Hsi K H,Kenny M,Simi A,et al.Purification of structurally similar compounds by the formation of impurity Co-former complexes in solution[J].Crystal Growth & Design,2013,13(4):1577-1582.
[16] Zhang Y N,Yin H M,Zhang Y,et al.Preparation of a 1:1 cocrystal of genistein with 4,4'-bipyridine[J].Journal of Crystal Growth,2017,458:103-109.
[17] Childs S L,Stahly G P,Park A.The salt-cocrystal continuum:The influence of crystal structure on ionization state[J].Molecular Pharmaceutics,2007,4(3):323-338.
[18] Elbagerma M A,Edwards H G M,Munshi T,et al.Identification of a new co-crystal of salicylic acid and benzamide of pharmaceutical relevance[J].Analytical and Bioanalytical Chemistry,2010,397(1):137-146.
[19] Mohammad M A,Alhalaweh A,Velaga S P.Hansen solubility parameter as a tool to predict cocrystal formation[J].International Journal of Pharmaceutics,2011,407(1/2):63-71.
[20] Etter M C,MacDonald J C,Bernstein J.Graph-set analysis of hydrogen-bond patterns in organic crystals[J].Acta Crystallographica Section B:Structural Science,1990,46(2):256-262.
[21] Musumeci D,Hunter C A,Prohens R,et al.Virtual cocrystal screening[J].Chemical Science,2011,2(5):883-890.
[22] Fábián L.Cambridge structural database analysis of molecular complementarity in cocrystals[J].Crystal Growth and Design,2009,9(3):1436-1443.
[23] Anderson K M,Probert M R,Whiteley C N,et al.Designing co-crystals of pharmaceutically relevant compounds that crystallize with Z'>1[J].Crystal Growth and Design,2008,9(2):1082-1087.
[24] Bis J A,McLaughlin O L,Vishweshwar P,et al.Supramolecular heterocatemers and their role in cocrystal design[J].Crystal Growth & Design,2006,6(12):2648-2650.
[25] Aakery C B,Schultheiss N C,Rajbanshi A,et al.Supramolecular synthesis based on a combination of hydrogen and halogen bonds[J].Crystal Growth and Design,2008,9(1):432-441.
[26] Abramov Y A,Loschen C,Klamt A.Rational coformer or solvent selection for pharmaceutical cocrystallization or desolvation[J].Journal of Pharmaceutical Sciences,2012,101(10):3687-3697.
[27] Durán-Palma M H,Mendoza-Barraza S S,Magaña-Vergara N E,et al.Crystal structure of pharmaceutical cocrystals of 2,6-diaminopyridine with piracetam and theophylline[J].Acta Crystallographica Section C:Structural Chemistry,2017,73(10):767-772.
[28] Kamble R N,Bothiraja C,Mehta P P,et al.Synthesis,solid state characterization and antifungal activity of ketoconazole cocrystals[J].Journal of Pharmaceutical Investigation,2018,48(5):541-549.
[29] Do Amaral L H,do Carmo F A,Amaro M I,et al.Development and characterization of dapsone cocrystal prepared by scalable production methods[J].AAPS Pharm Sci Tech,2018,19(6):2687-2699.
[30] Wichianphong N,Charoenchaitrakool M.Application of Box-Behnken design for processing of mefenamic acid-paracetamol cocrystals using gas anti-solvent (GAS) process[J].Journal of CO2 Utilization,2018,26:212-220.
[31] Perlovich G L.Two-component molecular crystals:Evaluation of the formation thermodynamics based on melting points and sublimation data[J].Cryst Eng Comm,2017,19(21):2870-2883.
[1] 张梓越, 陈学青, 梁高峰, 赵浩, 张继军. 高铝粉煤灰综合利用中氯化铝淘洗纯化影响因素的研究[J]. 现代化工, 2020, 40(3): 103-106,111.
[2] 肖红岩, 张宁, 郭明钢. 膜法协同氢气分离-脱水改进STAR工艺[J]. 现代化工, 2020, 40(2): 201-205.
[3] 刘雪丽, 刘建伟, 刘元涛, 张波, 康心悦. 氨基酸发酵厂废气全过程控制技术与应用[J]. 现代化工, 2020, 40(2): 206-210.
[4] 蒋洪, 王金波, 单永康, 杨东磊. 基于回归正交试验设计的三甘醇脱水装置能耗优化[J]. 现代化工, 2020, 40(1): 215-219.
[5] 夏鑫, 李妍, 蔺建民. 分子模拟技术在柴油抗磨剂相关研究中的应用[J]. 现代化工, 2019, 39(S1): 38-44.
[6] 李婵君, 吴理觉, 文定强. 镍钴锰三元前驱体生产废水零排放处理工艺设计研究进展[J]. 现代化工, 2019, 39(9): 36-39.
[7] 朱超, 陈海胜, 苑杨, 钱行, 黄克谨. 过量进料反应隔离壁蒸馏塔的设计与比较[J]. 现代化工, 2019, 39(9): 204-207.
[8] 李元军. 项目HAZOP分析完整性保证及其分析方法运用扩展的探究[J]. 现代化工, 2019, 39(9): 11-15.
[9] 张金菊. 精脱硫中试装置优化设计[J]. 现代化工, 2019, 39(8): 210-212.
[10] 张晶晶, 张亚涛. 基于MOFs的混合基质膜在气体分离中的研究进展[J]. 现代化工, 2019, 39(8): 38-42.
[11] 蔡燕, 姜路云, 陈华旺, 韩丽玮, 吴锦明. 三相法分离番薯过氧化物酶[J]. 现代化工, 2019, 39(7): 127-132.
[12] 徐青, 李冰晶, 罗丽平, 王代波, 聂飞, 周元敬. 蓝莓多糖的提取分离及生物活性研究进展[J]. 现代化工, 2019, 39(5): 38-41.
[13] 顾克, 陈海胜, 苑杨, 钱行, 黄克谨. 一种新型双隔壁反应精馏塔及其性能[J]. 现代化工, 2019, 39(11): 202-206.
[14] 程加林, 池永庆, 贾攀锋. 硫酸铵转化法制取硫酸钾新工艺设计研究[J]. 现代化工, 2019, 39(11): 180-184.
[15] 宣根海, 张英, 厉勇, 邢兵. 炼厂低温热优化利用及其网络GFDA3分析评价[J]. 现代化工, 2018, 38(8): 193-197.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn