Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (3): 48-51    DOI: 10.16606/j.cnki.issn0253-4320.2020.03.011
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
无金属石墨烯降解水中有机污染物的研究进展
袁瑞霞1, 蒋中秋1, 于鹏2
1. 东北石油大学化学化工学院, 黑龙江 大庆 163318;
2. 大庆石化公司炼油厂, 黑龙江 大庆 163711
Research progress on degrading organic pollutants in water by metal-free graphene-based catalyst
YUAN Rui-xia1, JIANG Zhong-qiu1, YU Peng2
1. School of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China;
2. Oil Refinery, PetroChina Daqing Petrochemical Company, Daqing 163711, China
下载:  PDF (1509KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 对近年来无金属石墨烯基催化剂活化过一硫酸盐(PMS)或过二硫酸盐(PS)进行了总结,对降解水中污染物的机理进行了讨论,并归纳了无金属石墨烯基催化剂在实际水环境处理中存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁瑞霞
蒋中秋
于鹏
关键词:  高级氧化技术  自由基  石墨烯  催化剂    
Abstract: Latest research progress on application of metal-free graphene-based catalysts in activating peroxymonosulfate (PMS) and/or persulfate (PS) is summarized.The mechanism of degrading pollutants in water by metal-free graphene-based catalysts is also discussed.The existing problems for metal-free graphene-based catalysts in actual water environment treatment are summarized.
Key words:  advanced oxidation technology    free radicals    graphene    catalyst
收稿日期:  2019-07-02      修回日期:  2020-01-01          
ZTFLH:  X703  
基金资助: 黑龙江省博士后科学基金项目(LBH-Z18043);黑龙江省自然科学基金项目(B2016002)
通讯作者:  袁瑞霞(1986-),女,博士,教授,主要从事水处理技术催化剂制备及机理研究,通讯联系人,474971262@qq.com。    E-mail:  474971262@qq.com
引用本文:    
袁瑞霞, 蒋中秋, 于鹏. 无金属石墨烯降解水中有机污染物的研究进展[J]. 现代化工, 2020, 40(3): 48-51.
YUAN Rui-xia, JIANG Zhong-qiu, YU Peng. Research progress on degrading organic pollutants in water by metal-free graphene-based catalyst. Modern Chemical Industry, 2020, 40(3): 48-51.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.03.011  或          https://www.xdhg.com.cn/CN/Y2020/V40/I3/48
[1] Gogate P R,Pandit A B.A review of imperative technologies for wastewater treatment Ⅰ:Oxidation technologies at ambient conditions[J].Advances in Environmental Research,2004,8(3/4):501-551.
[2] Dhakshinamoorthy A.Metal nanoparticles as heterogeneous Fenton catalysts[J].Chem Sus Chem,2012,5(1):46-64.
[3] Luo M,Lv L,Deng G,et al.The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange Ⅱ in Fenton-like Co2+-HCO3- system[J].Applied Catalysis A:General,2014,469:198-205.
[4] Messele S A.Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol[J].Catalysis Today,2015,240:73-79.
[5] 王茂东,杨世迎,陈友媛.过硫酸盐活化高级氧化新技术[J].化学进展,2008,20(9):1433-1438.
[6] Huang Y F,Huang Y H.Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(Ⅱ,Ⅲ) two-stage oxidation process[J].J Hazard Mater,2009,162(2/3):1211-1216.
[7] Shao P,Duan X,Xu J,et al.Heterogeneous activation of peroxymonosulfate by amorphous boron for degradation of bisphenol S[J].J Hazard Mater,2017,322(B):532-539.
[8] Guo P,Tang L,Tang J,et al.Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon[J].J Colloid Interface Sci,2016,469:78-85.
[9] Liu L,Zhu Y P,Su M,et al.Metal-free carbonaceous materials as promising heterogeneous catalysts[J].Chem Cat Chem,2015,7(18):2765-2787.
[10] Stankovich S,Dikin D A,Piner R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558-1565.
[11] Sun H,Liu S,Zhou G,et al.Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants[J].ACS Appl Mater Interfaces,2012,4(10):5466-5471.
[12] Zhang W,Tay H L,Lim S S,et al.Supported cobalt oxide on MgO:Highly efficient catalysts for degradation of organic dyes in dilute solutions[J].Applied Catalysis B:Environmental,2010,95(1/2):93-99.
[13] Bostjan Genorio,Wei Lu,Ayrat M Dimiev,et al.In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks[J].ACS Nano,2012,6(5):4231-4240.
[14] Bolotin K I,Sikes K J,Jiang Z,et al.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008,146(9/10):351-355.
[15] Hu Z T,Liu J,Yan X,et al.Low-temperature synthesis of graphene/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation[J].Chemical Engineering Journal,2015,262:1022-1032.
[16] Meryl D,Stoller S P,Zhu Yanwu,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498-3502.
[17] Wang X,Qin Y,Zhu L,et al.Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols:Synergistic effect between adsorption and catalysis[J].Environ Sci Technol,2015,49(11):6855-6864.
[18] Kang J,Zhou L,Duan X,et al.Catalytic degradation of antibiotics by metal-free catalysis over nitrogen-doped graphene[J].Catalysis Today,2018.https://doi.org/10.1016/j.cattod.2018.12.002.
[19] Duan X,Ao Z,Sun H,et al.Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis[J].ACS Appl Mater Interfaces,2015,7(7):4169-4178.
[20] Chen X,Oh W D,Hu Z T,et al.Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J].Applied Catalysis B:Environmental,2018,225:243-257.
[21] Wang C,Kang J,Sun H,et al.One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes[J].Carbon,2016,102:279-287.
[22] Liang P,Zhang C,Duan X,et al.N-doped graphene from metal-organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid:N-functionality and mechanism[J].ACS Sustainable Chemistry & Engineering,2017,5(3):2693-2701.
[23] Liang P,Zhang C,Duan X,et al.An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants:Formation mechanism and generation of singlet oxygen from peroxymonosulfate[J].Environmental Science:Nano,2017,4(2):315-324.
[24] Indrawirawan S,Sun H,Duan X,et al.Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation[J].Journal of Materials Chemistry A,2015,3(7):3432-3440.
[25] Sun H,Drawirawan S,Duan X,et al.Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals[J].Applied Catalysis B:Environmental,2014,154/155:134-141.
[26] Duan X,O'onnell K,Sun H,et al.Sulfur and nitrogen Co-doped graphene for metal-free catalytic oxidation reactions[J].Small,2015,11(25):3036-3044.
[27] Ren X,Guo H,Feng J,et al.Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel[J].Chemosphere,2018,191:389-399.
[28] Wang J,Duan X,Dong Q,et al.Facile synthesis of N-doped 3D graphene aerogel and its excellent performance in catalytic degradation of antibiotic contaminants in water[J].Carbon,2019,144:781-790.
[1] 安亚苹, 刘淑芝, 张梅. 可充锌空气电池非贵金属阴极催化剂研究进展[J]. 现代化工, 2020, 40(3): 36-39.
[2] 白彦波, 毛伟, 秦越, 贾兆华, 田松, 吕剑. 氢氟烯烃合成用脱氯化氢催化剂的研究进展[J]. 现代化工, 2020, 40(3): 26-29,35.
[3] 李琰, 王玲玲, 赵燕, 宗鹏. 环球油品公司知识产权保护下的创新发展模式研究[J]. 现代化工, 2020, 40(2): 12-16.
[4] 温术来. 锌空气电池氧化还原催化剂的研究进展[J]. 现代化工, 2020, 40(2): 53-56,61.
[5] 李硕, 狄佐星, 罗明生. 钴基费托合成催化剂载体表面改性及失活机理研究进展[J]. 现代化工, 2020, 40(2): 48-52.
[6] 王雪清, 赵越, 蒋广安, 马传军. 改性活性炭复合催化剂催化臭氧氧化处理石化污水的研究[J]. 现代化工, 2020, 40(2): 172-176.
[7] 卢惠, 张新堂. CeO2催化剂的制备条件对甲醇和二氧化碳合成碳酸二甲酯的影响[J]. 现代化工, 2020, 40(2): 177-180,186.
[8] 冯娟, 谢毅鹏, 石剑, 周永生, 黄泽恩, 曾桂凤, 王车礼. 焙烧温度对Mg-Zn复合氧化物催化剂结构与催化性能的影响[J]. 现代化工, 2020, 40(2): 167-171,176.
[9] 冉雪梅, 刘瑶, 黄张根, 曾泽泉, 王建成. 螯合树脂原位制备载铁炭基催化剂活化过硫酸盐降解染料X-3B的研究[J]. 现代化工, 2020, 40(2): 196-200.
[10] 王吉平, 苏应玺, 董国亮, 孔爱平, 姜骋, 高聪. 流化床甲醇制烯烃含烃催化剂锁斗分离技术研究及应用[J]. 现代化工, 2020, 40(2): 219-221.
[11] 邹庆平, 陈秀鹃, 沈树宝, 陈英文. 多环芳烃有机废气的催化燃烧处理技术进展[J]. 现代化工, 2020, 40(1): 42-45.
[12] 陈钢. 碳四炔烃加氢技术进展[J]. 现代化工, 2020, 40(1): 54-57,62.
[13] 刘岩, 李巧灵, 李兰兰, 唐成春. 石墨烯/氮化硼异质结制备及应用研究进展[J]. 现代化工, 2020, 40(1): 25-28.
[14] 方琼, 吴东, 沈卫华, 朱志庆, 方云进. La改性NiMgAl催化剂对甲烷干气重整反应的影响[J]. 现代化工, 2020, 40(1): 86-90.
[15] 刘嵩, 刘存, 刘海鸥, 张雄福. Pd/KL催化剂高效催化苯酚选择性加氢制环己酮的研究[J]. 现代化工, 2020, 40(1): 140-144.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn