Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (2): 137-142    DOI: 10.16606/j.cnki.issn0253-4320.2020.02.029
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
二醛纳米纤维素的“一步法”制备及其分散稳定性研究
孟宇1, 曹雨1, 李加双1, 卞佳伟1, 田秀枝1,2, 邓海波1, 蒋学1,2
1. 江南大学生态纺织教育部重点实验室, 江苏 无锡 214122;
2. 华南理工大学制浆造纸工程国家重点实验室, 广东 广州 510640
Preparation of dialdehyde nanocellulose by “one step method” and research on its dispersion stability
MENG Yu1, CAO Yu1, LI Jia-shuang1, BIAN Jia-wei1, TIAN Xiu-zhi1,2, DENG Hai-bo1, JIANG Xue1,2
1. Key Laboratory of Eco-Textiles of the Ministry of Education, Jiangnan University, Wuxi 214122, China;
2. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
下载:  PDF (2149KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以微晶纤维素为原料,直接采用高碘酸钠氧化"一步法"制备了二醛纳米纤维素(DANC)。通过单因素实验探讨了不同氧化条件对产物醛基含量及产率的影响。利用红外光谱、X射线衍射、透射电镜和热重分析对优化氧化条件下制备的产物进行表征。结果表明,在40℃、pH为4的条件下,用0.5 mol/L的高碘酸钠氧化40 g/L的微晶纤维素,可以得到基本无定型的DANC,醛基含量为6.84 mmol/g,产率为49%,长度与直径主要分布在110~170 nm与10~20 nm。DANC易团聚,加入少量壳寡糖可以明显增加纳米纤维素在水中的分散稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟宇
曹雨
李加双
卞佳伟
田秀枝
邓海波
蒋学
关键词:  微晶纤维素  高碘酸钠  氧化  二醛纳米纤维素  壳寡糖  分散    
Abstract: At present,it is of great significance to develop an environmentally friendly,efficient and low energy consumption method for the preparation of dialdehyde nanocellulose (DANC).DANC is prepared via one step method by using microcrystalline cellulose (MCC) as raw material and sodium periodate as oxidant.The effects of different oxidation conditions on the aldehyde content and yield of the product are investigated by single factor experiments.The products prepared under the optimized oxidation conditions are characterized by FT-IR,XRD,TEM and TG.It is shown that an amorphous DANC with an aldehyde content of 6.84 mmol·g-1 can be obtained when 40 g·L-1 of microcrystalline cellulose is oxidized by 0.5 mol·L-1 of sodium periodate at 40℃ and pH=4.The yield of DANC can reach 49%.The length and diameter of DANC distribute in the range of 110-170 nm and 10-20 nm,respectively.DANC is easy to agglomerate,and adding a small amount of chitosan oligosaccharide can significantly increase the dispersion stability of DANC in water.
Key words:  microcrystalline cellulose    sodium periodate    oxidation    dialdehyde nanocellulose    chitosan oligosaccharide    disperse
收稿日期:  2019-04-15      修回日期:  2019-12-09           出版日期:  2020-02-20
O636.9  
基金资助: 国家自然科学基金(31570578);制浆造纸工程国家重点实验室开放基金(201809,201772);中央高校基本科研业务费专项资金(JUSRP51907A)
通讯作者:  蒋学(1976-),男,博士,教授,主要研究方向为生物质改性与利用,通讯联系人,jiangx@jiangnan.edu.cn    E-mail:  jiangx@jiangnan.edu.cn
作者简介:  孟宇(1995-),男,硕士研究生,主要研究方向为纤维素的改性与利用,791003062@qq.com
引用本文:    
孟宇, 曹雨, 李加双, 卞佳伟, 田秀枝, 邓海波, 蒋学. 二醛纳米纤维素的“一步法”制备及其分散稳定性研究[J]. 现代化工, 2020, 40(2): 137-142.
MENG Yu, CAO Yu, LI Jia-shuang, BIAN Jia-wei, TIAN Xiu-zhi, DENG Hai-bo, JIANG Xue. Preparation of dialdehyde nanocellulose by “one step method” and research on its dispersion stability. Modern Chemical Industry, 2020, 40(2): 137-142.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.02.029  或          https://www.xdhg.com.cn/CN/Y2020/V40/I2/137
[1] Sticklen M B.Plant genetic engineering for biofuel production:Towards affordable cellulosic ethanol[J].Nature Reviews Genetics,2008,9(6):433-443.
[2] Siqueira G,Bras J,Dufresne A.Cellulosic bionanocomposites:A review of preparation,properties and applications[J].Polymers,2010,2(4):728-765.
[3] Yu H,Yan C,Yao J.Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites[J].RSC Advances,2014,4(104):59792-59802.
[4] Akhlaghi S P,Berry R M,Tam K C.Modified cellulose nanocrystal for vitamin C delivery[J].AAPS Pharm Sci Tech,2014,16(2):306-314.
[5] Liu C,Li B,Du H,et al.Properties of nanocellulose isolated from corncob residue using sulfuric acid,formic acid,oxidative and mechanical methods[J].Carbohydrate Polymers,2016,151:716-724.
[6] Habibi Y,Lucia L A,Rojas O J.Cellulose nanocrystals:Chemistry,self-Assembly,and applications[J].Chemical Reviews,2010,110(6):3479-3500.
[7] Benhamou K,Dufresne A,Magnin A,et al.Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time[J].Carbohydrate Polymers,2014,99(1):74-83.
[8] Marimuthu T S,Atmakuru R.Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth:Eichhornia crassipes[M].Berlin:Springer Berlin Heidelberg,2015:1701-1705.
[9] Paximada P,Dimitrakopoulou E A,Tsouk O E,et al.Structural modification of bacterial cellulose fibrils under ultrasonic irradiation[J].Carbohydrate Polymers,2016,150:5-12.
[10] 闫德东,陆琪鑫,田秀枝,等.阳离子化纳米纤维素晶体增强壳聚糖复合膜的制备及性能[J].功能高分子学报,2016,29(3):323-328.
[11] Yang H,Alam M N,van de Ven T G M.Highly changed nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers[J].Cellulose,2013,20(4):1865-1875.
[12] 熊犍,叶君,何小维,等.改进非均相高碘酸氧化纤维素反应[J].高分子材料科学与工程,2000,16(3):172-175.
[13] 黄日晋,杨志恒,程小娟,等.双醛纳米晶纤维素的制备及其表征[J].天津科技大学学报,2016,31(4):51-55.
[14] Sun B,Hou Q,Liu Z,et al.Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive[J].Cellulose,2015,22(2):1135-1146.
[15] Sirvïö J A,Anttila A K,Anna Maria Pirttilä A M.Cationic wood cellulose films with high strength and bacterial antiadhesive properties J].Cellulose,2014,21(5):3573-3583.
[16] Kim U J,Kuga S,Wada M,et al.Periodate oxidation of crystalline cellulose[J].Biomacromolecules,2000,1(3):488-492.
[1] 陈宁, 刘斌, 杜燕萍, 张鹏, 常薇, 郑长征. SnO2复合材料作为锂离子电池负极的研究进展[J]. 现代化工, 2020, 40(2): 28-31.
[2] 张琳琳, 张梅, 刘淑芝. 非贵金属催化剂催化制备对氨基苯酚研究进展[J]. 现代化工, 2020, 40(2): 72-75.
[3] 刘萍, 燕宇, 秦海利, 刘欢欢. 基于Co3O4/C复合水凝胶的全固态柔性超级电容器的研究[J]. 现代化工, 2020, 40(2): 89-94.
[4] 孟祥祺, 王晓蔷, 邹易杰, 施岩, 刘道胜, 赵志航, 刁祥瑞. 层状双金属Me-Cu/SiO2催化剂对大庆常顶油品脱砷性能的影响[J]. 现代化工, 2020, 40(2): 118-122.
[5] 青玉泉, 杨明君, 李垒, 江文. 改性纳米二氧化硅复合降黏剂的制备与性能评价[J]. 现代化工, 2020, 40(2): 153-156,161.
[6] 任赏赏, 刘学武, 陈淑花, Delphine Mukamurara, 邹久朋. 氧化铜脱汞剂的制备及其脱汞研究[J]. 现代化工, 2020, 40(2): 132-136,142.
[7] 王雪清, 赵越, 蒋广安, 马传军. 改性活性炭复合催化剂催化臭氧氧化处理石化污水的研究[J]. 现代化工, 2020, 40(2): 172-176.
[8] 卢惠, 张新堂. CeO2催化剂的制备条件对甲醇和二氧化碳合成碳酸二甲酯的影响[J]. 现代化工, 2020, 40(2): 177-180,186.
[9] 冯娟, 谢毅鹏, 石剑, 周永生, 黄泽恩, 曾桂凤, 王车礼. 焙烧温度对Mg-Zn复合氧化物催化剂结构与催化性能的影响[J]. 现代化工, 2020, 40(2): 167-171,176.
[10] 王洁, 崔孝玲, 赵冬妮, 杨莉, 李世友. 适配于富锂锰基正极材料电解液体系的研究[J]. 现代化工, 2020, 40(1): 19-24.
[11] 艾尼娃·木尼热, 马玉花, 朱恩权, 粟智. p-n异质结ZnO/HRP催化剂的制备及其光催化性能研究[J]. 现代化工, 2020, 40(1): 81-85.
[12] 孙佳敏, 刘靖, 刘颖雅, 王安杰. 过氧化钼改性UiO-67催化丙烯环氧化性能研究[J]. 现代化工, 2020, 40(1): 106-110.
[13] 何原子, 丁春华, 肖宇, 姜宏, 张松. 纳米Au修饰煤基活性炭固载葡萄糖氧化酶生物传感器的研究[J]. 现代化工, 2020, 40(1): 129-133.
[14] 张康明, 戴丽琴, 谢莉婧, 苏方远, 刘卓, 陈志文, 陈成猛. 高还原氧化石墨烯隔膜应用于锂硫电池的研究[J]. 现代化工, 2020, 40(1): 150-154,160.
[15] 劳彩娴, 卢立新. TiO2/ACF的制备及其光催化降解乙烯的性能研究[J]. 现代化工, 2020, 40(1): 185-188.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 101 -104 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 105 -108,110 .
[3] . [J]. Modern Chemical Industry, 2015, 35(8): 109 -114 .
[4] . [J]. Modern Chemical Industry, 2015, 35(8): 115 -117 .
[5] . [J]. Modern Chemical Industry, 2015, 35(8): 118 -120 .
[6] . [J]. Modern Chemical Industry, 2015, 35(8): 121 -123,125 .
[7] . [J]. Modern Chemical Industry, 2015, 35(8): 124 -128 .
[8] . [J]. Modern Chemical Industry, 2015, 35(8): 129 -132 .
[9] . [J]. Modern Chemical Industry, 2015, 35(8): 133 -136 .
[10] . [J]. Modern Chemical Industry, 2015, 35(8): 137 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn