Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (2): 110-113    DOI: 10.16606/j.cnki.issn0253-4320.2020.02.023
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
沉淀法ZrO2-Al2O3复合载体的制备及其甲烷化催化性能初探
吴刚强1,2, 郎中敏1, 王亚雄1, 徐绍平2
1. 内蒙古科技大学化学与化工学院, 内蒙古 包头 014010;
2. 大连理工大学化工学院, 辽宁 大连 116024
Preparation of ZrO2-Al2O3 composite carrier by precipitation method and preliminary study on its catalytic performance in methanation
WU Gang-qiang1,2, LANG Zhong-min1, WANG Ya-xiong1, XU Shao-ping2
1. School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China;
2. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
下载:  PDF (2023KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧氯化锆和硝酸铝混合溶液为前驱体,氨水为沉淀剂,PEG-6000为分散剂,通过沉淀法合成多孔ZrO2-Al2O3复合载体。利用正交实验考察了氧氯化锆和硝酸铝混合溶液浓度、锆铝摩尔比、分散剂质量、焙烧时间等因素对ZrO2-Al2O3复合载体比表面积的影响,得到合成多孔ZrO2-Al2O3复合载体的最佳工艺条件:氧氯化锆和硝酸铝混合溶液浓度为0.4 mol/L、锆铝摩尔比为3∶7、分散剂PEG-6000的质量为1 g、焙烧时间为6 h。对该条件下合成的多孔ZrO2-Al2O3复合载体进行BET、SEM、XRD和粒度表征。结果发现,合成的多孔ZrO2-Al2O3复合载体粒度小、分布均匀、表面疏松、比表面积大,适合做负载型催化剂载体的材料。通过浸渍法载镍制得Ni/ZrO2-Al2O3催化剂,初步检测了其甲烷化催化活性,结果发现,CO转化率随温度单调增大,在470℃高达89%,之后有所减低;CH4选择性最高可达98%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴刚强
郎中敏
王亚雄
徐绍平
关键词:  正交实验  ZrO2  沉淀法  复合载体  甲烷化    
Abstract: A porous ZrO2-Al2O3 composite carrier is synthesized by a precipitation method using a mixed solution of zirconium oxychloride and aluminum nitrate as a precursor,ammonia as a precipitant and PEG-6000 as a dispersant.The effects of the concentration of mixed solution,the molar ratio of zirconium to aluminum,the dosage of dispersant and the roasting time on the specific surface area of porous ZrO2-Al2O3 composite carrier are investigated by orthogonal experiment.The optimal process conditions for the synthesis of porous ZrO2-Al2O3 composite carrier are obtained by orthogonal analysis as follows:the concentration of mixed solution is 0.4 mol·L-1,the molar ratio of zirconium to aluminum is 3∶7,the dosage of dispersant (polyethylene glycol-6000) is 1 g,and the roasting time is 6 hours.ZrO2-Al2O3 composite carrier synthesized under the optimum conditions is characterized by BET,SEM,XRD and particle size analysis.The results show that the synthesized ZrO2-Al2O3 composite carrier has small particle size,uniform particle size distribution,loose surface and large specific surface area,and is suitable as a carrier for supporting catalysts.Ni/ZrO2-Al2O3 catalyst is prepared through impregnation method by loading Ni and its catalytic activity for methanation is preliminarily detected.It is found that the conversion rate of CO over the catalyst increases monotonically with increasing temperature,reaching 89% at 470℃,and decreases then.CH4 selectivity also has a similar variation pattern,reaching 98% at 470℃.
Key words:  orthogonal experiment    ZrO2    precipitation method    composite carrier    methanation
收稿日期:  2019-04-06      修回日期:  2019-12-19           出版日期:  2020-02-20
TQ028.8  
基金资助: 内蒙古自然科学基金(2016MS0514;2017MS0219);国家自然科学基金(21868022)
通讯作者:  郎中敏(1980-),女,硕士,副教授,主要研究方向为多孔材料吸附表征及传热过程机理,通讯联系人,755600976@qq.com    E-mail:  755600976@qq.com
作者简介:  吴刚强(1978-),男,博士研究生,副教授,主要研究方向为煤化工催化剂,wgqiang_78@126.com
引用本文:    
吴刚强, 郎中敏, 王亚雄, 徐绍平. 沉淀法ZrO2-Al2O3复合载体的制备及其甲烷化催化性能初探[J]. 现代化工, 2020, 40(2): 110-113.
WU Gang-qiang, LANG Zhong-min, WANG Ya-xiong, XU Shao-ping. Preparation of ZrO2-Al2O3 composite carrier by precipitation method and preliminary study on its catalytic performance in methanation. Modern Chemical Industry, 2020, 40(2): 110-113.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.02.023  或          https://www.xdhg.com.cn/CN/Y2020/V40/I2/110
[1] 杨喜锐.二氧化锆纳米粉体和涂层的制备及性能研究[D].大连:大连理工大学,2017.
[2] 王志,刘恩利,左满宏,等.超细二氧化锆制备与表征[J].工业催化,2008,5(29):22759-22776.
[3] 王晶,许吉泰,龚念.水热法制备球形二氧化锆粉体的研究[J].硅酸盐通报,2013,32(5):936-940.
[4] Christian M Pichler,Dong Gu,Hrishikesh Joshi,et al.Influence of preparation method and doping of zirconium oxide onto the material characteristics and catalytic activity for the HDO reaction in nickel on zirconium oxide catalysts[J].Journal of Catalysis,2018,365:367-375.
[5] Liu Qihai,Dong Xinfa,Liu Zili.Performance of Ni/Nano-ZrO2 catalysts for CO preferential methanation[J].Chin J Chem Eng,2014,22(2):131-135.
[6] Li Zhenhua,Tian Ye,He Jia,et al.High CO methanation activity on zirconia-supported molybdenum sulfide catalyst[J].Journal of Energy Chemistry,2014,23(5):625-632.
[7] Huang Yanhui,Wang Jijie,Liu Zhiming,et al.Highly efficient Ni-ZrO2 catalyst doped with Yb2O3 for co-methanation of CO and CO2[J].Applied Catalysis A:General,2013,466:300-306.
[8] Liu Qihai,Dong Xinfa,Mo Xinman,et al.Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst[J].Journal of Natural Gas Chemistry,2008,17:268-272.
[9] 姚玉芹,刘思含,胡宗元,等.γ-Al2O3性质对钼基耐硫甲烷化催化剂活性的影响[J].石油化工,2014,43(7):754-758.
[10] 杨霞,郑文涛,汪国高,等.MgO对Ni/Al2O3催化剂CO甲烷化性能的影响[J].现代化工,2014,34(1):90-94.
[11] 王宁,孙自瑾,王永钊,等.Ni-Fe/γ-Al2O3双金属催化剂的制备及其CO甲烷化性能研究[J].燃料化学学报,2011,39(3):219-223.
[12] Qin Hongyun,Guo Cuili,Wu Yuanyuan,et al.Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation[J].Korean J Chem Eng,2014,31(7):1168-1173.
[13] Guo Cuili,Wu Yuanyuan,Qin Hongyun,et al.CO methanation over ZrO2/Al2O3 supported Ni catalysts:A comprehensive study[J].Fuel Processing Technology,2014,124:61-69.
[14] 舒展霞.二氧化锆纳米材料的水热溶剂热法控制合成级性质表征[D].济南:山东大学,2012.
[1] 王军正, 周素莲, 丁世磊. Ni、Mo双金属催化剂在含氧生物油催化脱氧反应中的应用[J]. 现代化工, 2020, 40(2): 143-147,152.
[2] 梁平, 宋冬寒, 文明, 陈艺为, 胡连兴, 付显朝, 李梦莹, 陈晓宇. 基于ProMax的高含硫天然气脱硫装置模拟与优化[J]. 现代化工, 2019, 39(7): 202-206,208.
[3] 包喆宇, 朱明, 杜泽宇, 陈晓蓉, 梅华. Cu-Mg-Al催化剂催化甲醇裂解制氢的研究[J]. 现代化工, 2019, 39(3): 166-170.
[4] 邹梦, 莫文龙, 韩丹丹, 潘好伟, 杨圣超. 浆态床甲烷化工艺和Ni基催化剂的研究进展[J]. 现代化工, 2019, 39(3): 69-72.
[5] 李璐, 白英芝, 王海彦. PS乳液对MoO3-ZrO2结构及异构化性能的影响[J]. 现代化工, 2019, 39(3): 103-107.
[6] 韩建, 孔熙瑞, 张立波. Ni/Al2O3催化剂的制备及其催化NH3分解性能研究[J]. 现代化工, 2019, 39(3): 127-130.
[7] 张宁, 刘志伟, 刘有智. 共沉淀法制备钴锰层状双金属氢氧化物及其电化学性能[J]. 现代化工, 2019, 39(2): 68-73.
[8] 冯义, 马凤云, 许光文, 张亚新, 张峰. 基于甲烷化反应的π型离心式反应器的模拟及冷态研究[J]. 现代化工, 2019, 39(2): 202-206.
[9] 冯耀华, 李春雷, 艾灵. 锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2的产业化工艺研究[J]. 现代化工, 2018, 38(9): 174-179.
[10] 李亚楠, 安东, 徐冬梅, 冯德鑫. 负载型固体碱催化制备3,4-二甲基呋咱的方法研究[J]. 现代化工, 2018, 38(6): 144-147,149.
[11] 黄志伟, 朱萌, 张之杰, 仇汝臣. 绝热多段甲烷化工艺研究[J]. 现代化工, 2018, 38(6): 182-185.
[12] 魏群舒, 李坚斌, 陈雨, 方坤, 欧志枫. 超声场中蔗糖酯-纳米氧化银制备研究[J]. 现代化工, 2018, 38(4): 100-104,106.
[13] 徐金霞, 段正康, 兰小林, 方博林. Cu/ZrO2催化剂研究进展及一种新型催化剂制备方法的提出[J]. 现代化工, 2018, 38(4): 22-26.
[14] 高振. 绝热甲烷化装置波动工况影响模拟计算[J]. 现代化工, 2018, 38(2): 195-197.
[15] 黄振旭, 裴先茹, 孙海杰, 陈凌霞, 贾亚慧, 张梦娜. 大豆油制备生物柴油KF/ZrO2固体碱催化剂性能研究[J]. 现代化工, 2018, 38(2): 95-97,99.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 101 -104 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 105 -108,110 .
[3] . [J]. Modern Chemical Industry, 2015, 35(8): 109 -114 .
[4] . [J]. Modern Chemical Industry, 2015, 35(8): 115 -117 .
[5] . [J]. Modern Chemical Industry, 2015, 35(8): 118 -120 .
[6] . [J]. Modern Chemical Industry, 2015, 35(8): 121 -123,125 .
[7] . [J]. Modern Chemical Industry, 2015, 35(8): 124 -128 .
[8] . [J]. Modern Chemical Industry, 2015, 35(8): 129 -132 .
[9] . [J]. Modern Chemical Industry, 2015, 35(8): 133 -136 .
[10] . [J]. Modern Chemical Industry, 2015, 35(8): 137 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn