Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (2): 28-31    DOI: 10.16606/j.cnki.issn0253-4320.2020.02.006
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
SnO2复合材料作为锂离子电池负极的研究进展
陈宁, 刘斌, 杜燕萍, 张鹏, 常薇, 郑长征
西安工程大学环境与化学工程学院, 陕西 西安 710048
Research progress in SnO2 composites as anode material for lithium ion battery
CHEN Ning, LIU Bin, DU Yan-ping, ZHANG Peng, CHANG Wei, ZHENG Chang-zheng
School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
下载:  PDF (1284KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了SnO2复合材料作为锂离子电池负极材料方面的研究,从碳复合材料、石墨烯复合材料、金属复合材料以及其他种类的复合材料4个方面介绍了SnO2复合材料作为锂离子电池负极材料的研究进展,并对SnO2复合材料作为锂离子电池负极材料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宁
刘斌
杜燕萍
张鹏
常薇
郑长征
关键词:  二氧化锡  复合材料  锂离子电池  负极材料  研究进展    
Abstract: Research progress in using SnO2 composites as anode material for lithium-ion battery is reviewed from four aspects including carbon composites,graphene composites,metal composites and other kinds of composite materials.The development prospects of SnO2 composites as anode material for lithium-ion battery are also discussed.
Key words:  SnO2    composite material    lithium ion battery    anode material    research progress
收稿日期:  2019-05-30      修回日期:  2019-12-05           出版日期:  2020-02-20
TQ152  
基金资助: 国家自然科学基金项目(21703165);陕西省科技计划项目(2018GY-131);西安市碑林区科技计划项目(GX1808)
通讯作者:  刘斌(1979-),男,博士,副教授,研究方向为纳米材料与分子光谱分析,通讯联系人,liubin@xpu.edu.cn    E-mail:  liubin@xpu.edu.cn
作者简介:  陈宁(1996-),女,硕士生
引用本文:    
陈宁, 刘斌, 杜燕萍, 张鹏, 常薇, 郑长征. SnO2复合材料作为锂离子电池负极的研究进展[J]. 现代化工, 2020, 40(2): 28-31.
CHEN Ning, LIU Bin, DU Yan-ping, ZHANG Peng, CHANG Wei, ZHENG Chang-zheng. Research progress in SnO2 composites as anode material for lithium ion battery. Modern Chemical Industry, 2020, 40(2): 28-31.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.02.006  或          https://www.xdhg.com.cn/CN/Y2020/V40/I2/28
[1] Wei W L,Du P C,Liu D,et al.Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries[J].Journal of Colloid&Interface Science,2017,503:205-213.
[2] Yang S Z,Huang Y F,Han G H,et al.Synthesis and electrochemical performance of double shell SnO2@amorphous TiO2 spheres for lithium ion battery application[J].Powder Technology,2017,322:84-91.
[3] Liu L,Xie F,Lyu J,et al.Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries[J].Journal of Power Sources,2016,321:11-35.
[4] Zhang M,Wang T,Cao G.Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries[J].International Materials Reviews,2015,60(6):330-352.
[5] Li H J,Su Q M,Kang J W,et al.Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery[J].Materials Letters,2018,217:276-280.
[6] Deng Y F,Fang C C,Chen G H.The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries:A review[J].Journal of Power Sources,2016,304:81-101.
[7] Yi L,Liu L,Guo G,et al.Expanded graphite@SnO2@polyaniline composite with enhanced performance as anode materials for lithium ion batteries[J].Electrochimica Acta,2017,240:63-71.
[8] Agubra V A,Zuniga L,Flores D,et al.A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries[J].Electrochimica Acta,2017,224:608-621.
[9] Tian Q H,Li Y,Chen J Z,et al.A robust strategy for stabilizing SnO2:TiO2-supported and carbon-immobilized TiO2/SnO2/C composite towards improved lithium storage[J].Electrochimica Acta,2018,259:815-821.
[10] Li X L,Zhang X C,Li T T,et al.Graphene nanoribbons wrapping carbon-coated SnO2 nanoparticles anchored on carbon nanotubes for high Lit storage[J].Journal of Alloys and Compounds,2017,729:1064-1071.
[11] Wang Z,Mu J C,Li Y,et al.Preparation and lithium storage properties of NiO-SnO2/grapheme nanosheet ternary composites[J].Journal of Alloys and Compounds,2017,695:2909-2915.
[12] Tian Q H,Xu H,Li L X Y,et al.Fabrication of novel hetero-nanostructure of SnO2@TiO2@C for improved lithium storage[J].Materials Letters,2017,209:197-200.
[13] Wang Y,Zhang H,Hu R,et al.Fe3O4/SnO2/rGO ternary composite as a high-performance anode material for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,693:1174-1179.
[14] Tran H H,Nguyen P H,Cao V H,et al.SnO2 nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode material for lithium ion batteries[J].Chemical Physics Letter,2019,715:284-292.
[15] Wang H,Du X,Jiang X,et al.Pomegranate-like porous carbon coated CuxSny/Sn/SnO2 submicrospheres as superior lithium ion battery anode[J].Chemical Engineering Journal,2017,313:535-543.
[16] Jin R,Meng Y,Li G.Multiwalled carbon nanotubes@C@SnO2 quantum dots and SnO2 quantum dots@C as high rate anode materials for lithium-ion batteries[J].Applied Surface Science,2017,423:476-483.
[17] Yang J,Xi L,Tang J,et al.There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries[J].Electrochimica Acta,2016,217:274-282.
[18] Wang M S,Lei M,Wang Z Q,et al.Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery[J].Journal of Power Sources,2016,309:238-244.
[19] Xu P,Wang G,Yan J,et al.Reversible and high-capacity SnO2/carbon cloth composite electrode materials prepared by magnetron sputtering for Li-ion batteries[J].Materials Letters,2017,190:56-59.
[20] Zhang W,Li M,Xiao X,et al.In situ synthesis of ultrasmall SnO2,quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries[J].Journal of Alloys&Compounds,2017,727:1-7.
[21] Ye J J,An J S,Liu B B,et al.Facile preparation of SnO2/graphene nanosheet composite with excellent electrochemical performances for lithium storage[J].International Journal of Hydrogen Energy,2017,42:5199-5206.
[22] Shi S,Deng T,Zhang M,et al.Fast facile synthesis of SnO2/Graphene composite assisted by microwave as anode material for lithium-ion batteries[J].Electrochimica Acta,2017,246:1104-1111.
[23] Wu B Z,Li G H,Liu F Q.3D SnO2/sulfonated graphene composites with interpenetrating porous structure as anode material for lithium-ion batteries[J].International Journal of Hydrogen Energy,2017,42:21849-21854.
[24] Wen L,Qin X,Meng W,et al.Boron oxide-tin oxide/graphene composite as anode materials for lithium ion batteries[J].Materials Science and Engineering:B,2016,213:63-68.
[25] Zhao Y,Li X F,Dong L,et al.Electrospun SnO2-ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries[J].International Journal of Hydrogen Energy,2015,40(41):14338-14344.
[26] Zhu X H,Jan S S,Zan F,et al.Hierarchically branched TiO2@SnO2 nanofibers as high performance anodes for lithium-ion batteries[J].Materials Research Bulletin,2017,96:405-412.
[27] Tian Q H,Tian Y,Zhang W,et al.Impressive lithium storage of SnO2@TiO2 nanospheres with a yolk-like core derived from self-assembled SnO2 nanoparticles[J].Journal of Alloys and Compounds,2017,702:99-105.
[28] Wu H Y,Hon M H,Kuan C Y,et al.Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries[J].Ceramics International,2015,41(8):9527-9533.
[29] Wang K,Huang J G.Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternarycomposite as an anodic material for lithium-ion batteries[J].Journal of Physics and Chemistry of Solids,2019,126:155-163.
[30] Yang S,Wang Q F,Miao J,et al.SnO2 modified Li4Ti5O12 as a high performance lithium-ion battery material[J].Materials Letters,2017,205:150-154.
[1] 丘德立, 陈东, 郑宝成. Si@PNC复合材料应用于高性能锂离子电池的研究[J]. 现代化工, 2020, 40(2): 114-117.
[2] 董雅楠, 张秀娟, 郑文姬. MgO/TiO2复合结构紫外光探测器的制备及其光探测性能探究[J]. 现代化工, 2020, 40(2): 128-131.
[3] 王婉君, 张鹏, 贺政豪, 谢然, 张程祥, 李巾锭. 碳纤维复合材料压力容器的研究进展[J]. 现代化工, 2020, 40(1): 68-71.
[4] 王洁, 崔孝玲, 赵冬妮, 杨莉, 李世友. 适配于富锂锰基正极材料电解液体系的研究[J]. 现代化工, 2020, 40(1): 19-24.
[5] 徐祎晟, 张友祥. 含铝化合物表面包覆对富锂材料(Li1.2[Mn0.54Co0.13Ni0.13]O2)性能的影响[J]. 现代化工, 2020, 40(1): 96-101.
[6] 周龙祥, 刘咏, 张利珍, 吴照洋, 王保明, 化全县, 刘丽, 汤建伟. SiO2包覆CaCl2·2H2O相变纳米复合材料的制备及表征[J]. 现代化工, 2020, 40(1): 115-119.
[7] 秦洪伟, 闫彬, 王鑫, 刘妍, 尤国红. 石墨烯锰卟啉复合电极测定苯二酚异构体[J]. 现代化工, 2020, 40(1): 225-229.
[8] 王海涛, 奥德, 吕美婵, 刘亚攀, 常娜. 水性涂料生产废水的深度处理及资源化利用研究进展[J]. 现代化工, 2019, 39(S1): 45-48.
[9] 胡登峰, 于庆杰. 自愈性超疏水材料研究进展[J]. 现代化工, 2019, 39(9): 40-43,48.
[10] 李新宇, 张硕卿, 丁斌, 赵旭升, 杨全红, 徐强. 不同中心原子的MOF材料在锂(钠)离子电池中的应用[J]. 现代化工, 2019, 39(9): 44-48.
[11] 陈晶晶, 罗开举, 王彦, 诸静, 于俊荣, 胡祖明. 可逆交联单壁碳纳米管/聚酰胺复合材料的研究[J]. 现代化工, 2019, 39(9): 129-134,140.
[12] 张喜宝, 陈小雯, 丁鹏, 汪恒, 廖德康, 胡程程, 李晓斌, 陈祥迎. 乙酰丙酮钙/锌复合材料的控制合成及其在PVC热稳定性能中的应用[J]. 现代化工, 2019, 39(8): 152-156.
[13] 张向倩, 高月, 黄飞. 锂离子动力电池安全问题及防控技术分析[J]. 现代化工, 2019, 39(8): 7-10.
[14] 林涛, 范晶, 殷学风, 田杏欢, 王忠祥. 透明木材制备方法研究进展[J]. 现代化工, 2019, 39(8): 43-48.
[15] 徐成龙, 张家威, 张饮江. 微生物脱盐燃料电池MDCs存在的问题及其应用研究进展[J]. 现代化工, 2019, 39(8): 69-72.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 101 -104 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 105 -108,110 .
[3] . [J]. Modern Chemical Industry, 2015, 35(8): 109 -114 .
[4] . [J]. Modern Chemical Industry, 2015, 35(8): 115 -117 .
[5] . [J]. Modern Chemical Industry, 2015, 35(8): 118 -120 .
[6] . [J]. Modern Chemical Industry, 2015, 35(8): 121 -123,125 .
[7] . [J]. Modern Chemical Industry, 2015, 35(8): 124 -128 .
[8] . [J]. Modern Chemical Industry, 2015, 35(8): 129 -132 .
[9] . [J]. Modern Chemical Industry, 2015, 35(8): 133 -136 .
[10] . [J]. Modern Chemical Industry, 2015, 35(8): 137 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn