Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (1): 180-184    DOI: 10.16606/j.cnki.issn0253-4320.2020.01.038
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
核桃壳基活性炭的制备及其在超级电容器中的应用
张静雪, 梁晓怿, 贾倩
华东理工大学化工学院, 上海 200030
Preparation of walnut shell-based activated carbon and its application in supercapacitor
ZHANG Jing-xue, LIANG Xiao-yi, JIA Qian
School of Chemical Engineering, East China University of Science and Technology, Shanghai 200030, China
下载:  PDF (3485KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以核桃壳为原料,在不同活化时间下用水蒸气活化法制备了3种具有不同比表面积的活性炭。利用SEM、FT-IR、XRD和康塔吸附仪探究活化时间对材料的表面形貌、物相结构和孔径分布的影响。并通过恒电流充放电法、循环伏安法等测试其电化学性能。3个样品均表现出优异的大倍率性能(最大电流密度为20.0 A/g)。结果表明,随着活化时间增加,样品的比表面积增大,比电容增大,但稳定性下降。活化时间为120 min时活性炭样品比表面积为1 644 m2/g,孔径分布合理;在有机电解液体系中最大比电容为83.8 F/g,最大能量密度为18.2 Wh/kg,该样品具有良好的稳定性和可逆性,最适合长期应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张静雪
梁晓怿
贾倩
关键词:  核桃壳  活性炭  活化时间  超级电容器  电化学性能    
Abstract: Three kinds of activated carbon samples with different specific surface areas are prepared from walnut shell by using the steam activation method under different activation time.The influences of activation time on morphology,physical characters and pore structure parameters of the samples are studied by means of scanning electron microscopy (SEM),Fourier transform infrared spectroscopy (FT-IR),X-ray diffraction (XRD) and N2 adsorption/desorption method.Electrochemical performances of the samples are evaluated through galvanostatic charge-discharge,cyclic voltammetry and so on.It is found that all three samples exhibit extraordinary rate performance under high current density (up to 20 A·g-1).As the activation time prolongs,specific surface area and capacitance as well as energy density of the samples increase,however their stability decrease.The sample (AC120) prepared over an activation time of 120 minutes has a reasonable pore size distribution and a surface area of 1 644 m2·g-1.In an organic electrolyte system,AC120 sample's maximum specific capacitance and maximum energy density is 83.8 F·g-1 and 18.2 Wh·kg-1,respectively.AC120 also shows better performance in reversibility and stability,thus making it most suitable in long-term utilization.
Key words:  walnut shell    activated carbon    activation time    supercapacitor    electrochemical performance
收稿日期:  2019-03-20      修回日期:  2019-11-05           出版日期:  2020-01-20
TM912.9  
通讯作者:  梁晓怿(1973-),男,博士,教授,主要从事炭材料的研究,通讯联系人,liangxyecust@sina.com。    E-mail:  liangxyecust@sina.com
作者简介:  张静雪(1995-),女,硕士研究生,主要从事生物质基活性炭的研究,JXZhang24680@163.com
引用本文:    
张静雪, 梁晓怿, 贾倩. 核桃壳基活性炭的制备及其在超级电容器中的应用[J]. 现代化工, 2020, 40(1): 180-184.
ZHANG Jing-xue, LIANG Xiao-yi, JIA Qian. Preparation of walnut shell-based activated carbon and its application in supercapacitor. Modern Chemical Industry, 2020, 40(1): 180-184.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.01.038  或          https://www.xdhg.com.cn/CN/Y2020/V40/I1/180
[1] Zhang S,Pan N.Supercapacitors performance evaluation[J].Advanced Energy Materials,2015,5(6):1401401.
[2] Li K,Zhang J.Recent advances in flexible supercapacitors based on carbon nanotubes and graphene[J].Science China Materials,2018,61(2):210-232.
[3] Zheng M,Xiao X,Li L,et al.Hierarchically nanostructured transition metal oxides for supercapacitors[J].Science China Materials,2018,61(2):185-209.
[4] 周晓,孙敏强,王庚超.石墨烯负载新型π-共轭聚合物纳米复合电极材料的合成及其超级电容特性[J].物理化学学报,2016,32(4):975-982.
[5] Béguin F,Presser V,Balducci A,et al.Carbons and electrolytes for advanced supercapacitors[J].Advanced Materials,2014,26(14):2219-2251.
[6] Okman I,Karagöz S,Tay T,et al.Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide[J].Applied Surface Science,2014,293:138-142.
[7] 王景晴.核桃壳的综合利用[J].农产品加工,2008,1:22-25.
[8] Zhang S,Li Y,Li M.Porous hard carbon derived from walnut shell as an anode material for sodium-ion batteries[J].JOM,2018,70(8):1387-1391.
[9] 邢宝林.超级电容器活性炭电极材料制备及应用[M].北京:化学工业出版社,2017:55.
[10] Ruiz V,Santamaría R,Granda M,et al.Long-term cycling of carbon-based supercapacitors in aqueous media[J].Electrochimica Acta,2009,54(19):4481-4486.
[11] 逯高清编,张治安等译.超级电容器:材料,系统及应用[M].北京:机械工业出版社,2013:111.
[12] 逯高清编,张治安等译.超级电容器:材料,系统及应用[M].北京:机械工业出版社,2013:100-101.
[13] Teo E Y L,Muniandy L,Ng E P,et al.High surface area activated carbon from rice husk as a high performance supercapacitor electrode[J].Electrochimica Acta,2016,192:110-119.
[14] Yang C S,Jang Y S,Jeong H K.Bamboo-based activated carbon for supercapacitor applications[J].Current Applied Physics,2014,14(12):1616-1620.
[15] Farma R,Deraman M,Awitdrus A,et al.Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J].Bioresource Technology,2013,132:254-261.
[1] 赵立红, 闫捷, 梁旭, 张士祥, 蒋元力, 崔发科, 魏灵朝. 提高煤制乙二醇紫外透光率的研究进展[J]. 现代化工, 2020, 40(2): 76-78.
[2] 刘萍, 燕宇, 秦海利, 刘欢欢. 基于Co3O4/C复合水凝胶的全固态柔性超级电容器的研究[J]. 现代化工, 2020, 40(2): 89-94.
[3] 王雪清, 赵越, 蒋广安, 马传军. 改性活性炭复合催化剂催化臭氧氧化处理石化污水的研究[J]. 现代化工, 2020, 40(2): 172-176.
[4] 何原子, 丁春华, 肖宇, 姜宏, 张松. 纳米Au修饰煤基活性炭固载葡萄糖氧化酶生物传感器的研究[J]. 现代化工, 2020, 40(1): 129-133.
[5] 劳彩娴, 卢立新. TiO2/ACF的制备及其光催化降解乙烯的性能研究[J]. 现代化工, 2020, 40(1): 185-188.
[6] 郑婧, 乔俊莲, 林志芬. 活性炭的改性及吸附应用进展[J]. 现代化工, 2019, 39(S1): 53-57.
[7] 许世超, 穆春盛, 朱天哲, 乔阳. NiCo2O4修饰活性炭纤维作为超级电容器正极材料及其性能研究[J]. 现代化工, 2019, 39(8): 143-146.
[8] 柯钰, 朱易春, 连军锋. 铁碳微电解去除水中硝酸盐影响因素的研究[J]. 现代化工, 2019, 39(7): 79-82,84.
[9] 苑小娇, 孙明轩, 郑朝. BiOBr/石墨烯/TiO2纳米管阵列薄膜的制备及光电化学性能研究[J]. 现代化工, 2019, 39(7): 156-161.
[10] 苏暐光, 张策. 不同管径碳纳米管的制备及其电化学性能研究[J]. 现代化工, 2019, 39(7): 89-92.
[11] 张太亮, 李元璐, 罗雪梅, 唐闻一, 李永久. 三维光电催化氧化对硝基苯酚的研究[J]. 现代化工, 2019, 39(6): 172-177.
[12] 李桃桃, 刘畅, 陶磊, 肖茹. 活性炭负载磷钨酸催化聚酰胺6水解反应的研究[J]. 现代化工, 2019, 39(6): 111-115.
[13] 史纪峰, 孙明轩. 一步乙醇燃烧法合成C-CeO2超级电容器电极材料[J]. 现代化工, 2019, 39(6): 162-165.
[14] 朱磊, 俞泽民, 周子豪, 朱明亮. 一步水热法制备二氧化钛纳米线-还原氧化石墨烯复合材料及其超级电容器性能研究[J]. 现代化工, 2019, 39(5): 146-150.
[15] 王新海, 马珍珍. 电化学法制备的聚苯胺/石墨烯复合材料的微结构及性能研究[J]. 现代化工, 2019, 39(5): 156-159.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2009, 29(6): 0 .
[5] . [J]. , 2010, 30(3): 0 .
[6] . [J]. , 2010, 30(7): 0 .
[7] . [J]. , 2007, 27(2): 0 .
[8] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[9] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
[10] . [J]. Modern Chemical Industry, 2014, 34(7): 140 -144 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn