Research progress on carbon fiber composites-based pressure vessels
WANG Wan-jun1, ZHANG Peng1, HE Zheng-hao1, XIE Ran1, ZHANG Cheng-xiang1, LI Jin-ding2
1. Tianjin Special Equipment Inspection Institute, Tianjin 300192, China; 2. School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
Abstract: Carbon fiber composites and carbon fiber composite-based pressure vessels are briefly introduced.The research progress in structure design,performance optimization,damage and detection of carbon fiber composite-based pressure vessels are pivotally summarized and discussed.Finally,the future research directions are prospected for carbon fiber composite-based pressure vessels.
[1] 庄晓东,徐远超,尹梦琦,等.浅谈复合材料压力容器[J].化工工程与装备,2018,(5):269-271. [2] Lugovtsova Y,Prager J.Structural health monitoring of composite pressure vessels using guided ultrasonic waves[J].Insight-Non-Destructive Testing and Condition Monitoring,2018,10(3):139-144. [3] Fowler C P,Orifici A C,Wang C H.A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage[J].International Journal of Hydrogen Energy,2016,41(47):22067-22089. [4] Österle W,Dmitriev A I,Wetzel B,et al.The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite[J].Materials & Design,2016,93:474-484. [5] Forintos N,Czigany T.Multifunctional application of carbon fiber reinforced polymer composites:Electrical properties of the reinforcing carbon fibers-a short review[J].Composites Part B:Engineering,2019,162:331-342. [6] 王兰心,王冰心,申文静,等.酚醛基碳纤维的制备方法研究进展[J].现代化工,2018,38(10):154-159. [7] 王恺,吴茜,汪文博,等.可重复使用复合材料气瓶的设计及试验验证[J].宇航材料工艺,2019,48(6):16-20. [8] Al-Lami A,Hilmer P,Sinapius M.Eco-efficiency assessment of manufacturing carbon fiber reinforced polymers (CFRP) in aerospace industry[J].Aerospace Science and Technology,2018,79:669-678. [9] Barthelemy H,Weber M,Barbie F.Hydrogen storage:Recent improvements and industrial perspectives[J].International Journal of Hydrogen Energy,2017,72:7254-7262. [10] Zu L,Xu C,Zhang Q,et al.Design of filament-wound spherical pressure vessels based on non-geodesic trajectories[J].Composite Structures,2019,218:71-78. [11] 李长鹏,谢淮北,刘力红,等.纤维缠绕超高压容器承载特性研究[J].兵器材料科学与工程,2019,42(2):25-30. [12] 陈小平,王喜占.T800碳纤维在复合材料压力容器上的应用研究[J].高科技纤维与应用,2017,42(3):45-49. [13] Arhant M,Briançon C,Burtin C,et al.Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applications[J].Composite Structures,2019,212:535-546. [14] Zu L,Xu C,Wang H B,et al.Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J].Composite Structures,2019,207:41-52. [15] Son D S,Hong J H,Chang S H,et al.Determination of the autofrettage pressure and estimation of material failures of a type Ⅲ hydrogen pressure vessel by using finite element analysis[J].International Journal of Hydrogen Energy,2012,37(17):12771-12781. [16] Liao B B,Wang D L,Jia L Y,et al.Continuum damage modeling and progressive failure analysis of a Type Ⅲ composite vessel by considering the effect of autofrettage[J].Journal of Zhejiang University-Science A:Applied Physics & Engineering,2019,20(1):36-49. [17] Bouvier B,Guiheneuf V,Jean-marie A.Modeling and simulation of a composite high-pressure vessel made of sustainable and renewable alternative fibers[J].International Journal of Hydrogen Energy,2019,44(23):11970-11978. [18] Gemi K.Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure.A comparative study[J].Composites Part B:Engineering,2018,153:217-232. [19] 陈潇洒.铝内胆碳纤维全缠绕高压气瓶的轻量化与长寿命技术研究[D].南京:南京航空航天大学,2017:1-145. [20] Alcantar V,Aceves S M,Ledesma E,et al.Optimization of type 4 composite pressure vessels using genetic algorithms and simulated annealing[J].International Journal of Hydrogen Energy,2017,42:15770-12781. [21] Wang L,Zheng C X,Luo H Y,et al.Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J].Composite Structures,2015,134:475-482. [22] Halm D,Fouillen F,Laine E,et al.Composite pressure vessels for hydrogen storage in fire conditions:Fire tests and burst simulation[J].International Journal of Hydrogen Energy,2017,42:20056-20070. [23] Zhang Z,Wang C J,Huang G,et al.Thermal degradation behaviors and reaction mechanism of carbon fibre-poxy composite from hydrogen tank by TG-FTIR[J].Journal of Hazardous Materials,2018,357:73-80. [24] Flanagan M,Grogan D M,Goggins A,et al.Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers[J].Composites:Part A,2017,101:173-1841. [25] Chou H Y,Mouritz A P,Bannister M K,et al.Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure[J].Composites:Part A,2017,70:111-120. [26] Saeter E,Lasn K,Nony Y,et al.Embedded optical fibres for monitoring pressurization and impact of filament wound cylinders[J].Composite Structures,2019,210:608-617. [27] Gąsior P,Malesa M,Kaleta J,et al.Application of complementary optical methods for strain investigation in composite high pressure vessel[J].Composite Structures,2018,203:718-724. [28] Jeon S K,Kwon O H,Jang H S,et al.Effect of high pressure hydrogen on the mechanical characteristics single carbon fiber[J].Applied Surface Science,2018,432:176-182. [29] Rafiee R,Torabi M A.Stochastic prediction of burst pressure in composite pressure vessels[J].Composite Structures,2018,185:573-583. [30] Harada S,Arai Y,Araki W,et al.A simplified method for predicting burst pressure of type Ⅲ filament-wound CFRP composite vessels considering the inhomogeneity of fiber packing[J].Composite Structures,2018,190:79-90.