Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2020, Vol. 40 Issue (1): 19-24    DOI: 10.16606/j.cnki.issn0253-4320.2020.01.004
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
适配于富锂锰基正极材料电解液体系的研究
王洁, 崔孝玲, 赵冬妮, 杨莉, 李世友
兰州理工大学石油化工学院, 甘肃 兰州 730050
Study on electrolyte system adapted to lithium-rich manganese-based cathode materials
WANG Jie, CUI Xiao-ling, ZHAO Dong-ni, YANG Li, LI Shi-you
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
下载:  PDF (1408KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了构建适配于层状富锂锰基正极材料的电解液体系,总结了适配于富锂锰基正极材料的含不同官能团添加剂的电解液体系,并分析了作用机理,展望了匹配于该正极材料电解液的未来研究方向与应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洁
崔孝玲
赵冬妮
杨莉
李世友
关键词:  锂离子电池  富锂锰基层状氧化物  电解液  添加剂  官能团    
Abstract: To build an electrolyte system suitable for layered lithium-rich manganese-based cathode materials,the electrolyte systems with additives containing different functional groups,which are adapted to lithium-rich manganese-based cathode materials,are summarized.The action mechanism is analyzed and the future research directions as well as application prospects of such electrolytes are expected.
Key words:  lithium-ion battery    lithium-rich manganese-based layered oxide    electrolyte    additives    functional group
收稿日期:  2019-04-05      修回日期:  2019-10-31           出版日期:  2020-01-20
TM911  
基金资助: 国家自然科学基金项目(21766017);甘肃省科技计划项目(18JR3RA160)
通讯作者:  崔孝玲(1980-),女,博士,高级工程师,研究方向为功能材料和锂离子电池相关材料,通讯联系人,xlcuilw@163.com。    E-mail:  xlcuilw@163.com
作者简介:  王洁(1995-),女,硕士生
引用本文:    
王洁, 崔孝玲, 赵冬妮, 杨莉, 李世友. 适配于富锂锰基正极材料电解液体系的研究[J]. 现代化工, 2020, 40(1): 19-24.
WANG Jie, CUI Xiao-ling, ZHAO Dong-ni, YANG Li, LI Shi-you. Study on electrolyte system adapted to lithium-rich manganese-based cathode materials. Modern Chemical Industry, 2020, 40(1): 19-24.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2020.01.004  或          https://www.xdhg.com.cn/CN/Y2020/V40/I1/19
[1] Han J,Park I,Cha J,et al.Interfacial architectures derived by lithium difluoro (bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability[J].Chem Electro Chem,2017,4(1):56-65.
[2] 梁有维,李世友,李春雷,等.锂离子电池富锂锰基正极材料的研究进展[J].化工新型材料,2018,46(8):46-50.
[3] Yan P,Xiao L,Zheng J,et al.Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries[J].Chemistry of Materials,2015,27(3):975-982.
[4] Shi J,Zhang J,He M,et al.Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J].ACS Applied Materials & Interfaces,2016,8(31):20138-20146.
[5] 赵世玺,郭双桃,邓玉峰,等.Li2MnO3活化机理及其影响因素的研究进展[J].硅酸盐学报,2017,(4):495-503.
[6] Wang S,Hu H,Yu P,et al.Effect of electrolyte additives on high-temperature cycling performance of spinel LiMn2O4 cathode[J].Journal of Applied Electrochemistry,2018,48(11):1221-1230.
[7] 马国强,蒋志敏,陈慧闯,等.基于锂盐的新型锂电池电解质研究进展[J].无机材料学报,2018,33(7):699-710.
[8] Liao B,Li H,Xu M,et al.Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J].Advanced Energy Materials,2018,8(22):1800802.
[9] Qin Y,Chen Z,Liu J,et al.Lithium tetrafluoro oxalato phosphate as electrolyte additive for lithium-ion cells[J].Electrochemical and Solid-State Letters,2010,13(2):A11.
[10] Liu Z,Swapnil D,Xu M Q,et al.Investigation of lithium tetrafluorooxalatophosphate[LiPF4(C2O4)] based electrolytes[J].ECS Transactions,2011,33(28):89-93.
[11] Li Z D,Zhang Y C,Xiang H F,et al.Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J].Journal of Power Sources,2013,240:471-475.
[12] Zhou Z,Ma Y,Wang L,et al.Triphenyl phosphite as an electrolyte additive to improve the cyclic stability of lithium-rich layered oxide cathode for lithium-ion batteries[J].Electrochimica Acta,2016,216:44-50.
[13] Zhang J,Wang J,Yang J,et al.Artificial interface deriving from sacrificial tris (trimethylsilyl) phosphate additive for lithium rich cathode materials[J].Electrochimica Acta,2014,117:99-104.
[14] Han J G,Lee S J,Lee J,et al.Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries[J].ACS Applied Materials & Interfaces,2015,7(15):8319-8329.
[15] Pires J,Castets A,Timperman L,et al.Tris (2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J].Journal of Power Sources,2015,296:413-425.
[16] Sahore R,Tornheim A,Peebles C,et al.Methodology for understanding interactions between electrolyte additives and cathodes:A case of the tris (2,2,2-trifluoroethyl) phosphite additive[J].Journal of Materials Chemistry A,2018,6(1):198-211.
[17] 李琪,乔庆东,王艳菊,等.硼基锂盐电解质在锂离子电池中应用研究进展[J].化工新型材料,2015,(2):209-211.
[18] 仇卫华,阎坤,连芳,等.硼基锂盐电解质在锂离子电池中的应用[J].Progress in Chemistry,2011,23(2/3):357-365.
[19] 薛宇宙,李世友,崔孝玲,等.双草酸硼酸锂电解液在富锂锰锂离子电池中的应用[J].化工新型材料,2016,(8):232-234.
[20] Cha J,Han J,Hwang J,et al.Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive,lithium difluoro (oxalato) borate,in high-voltage lithium-ion batteries[J].Journal of Power Sources,2017,357:97-106.
[21] Li F,Shangguan X,Jia G,et al.Dual-salts of LiTFSI and LiODFB for high voltage cathode LiNi0.5Mn1.5O4[J].Journal of Solid State Electrochemistry,2016,20(12):3491-3498.
[22] Li J,Xing L,Zhang L,et al.Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive[J].Journal of Power Sources,2016,324:17-25.
[23] Rong H,Xu M,Xie B,et al.Tris (trimethylsilyl) borate (TMSB) as a cathode surface film forming additive for 5 V Li/LiNi0.5Mn1.5O4 Li-ion cells[J].Electrochimica Acta,2014,147:31-39.
[24] Li J,Xing L,Zhang R,et al.Tris (trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J].Journal of Power Sources,2015,285:360-366.
[25] Wang Z,Xing L,Li J,et al.Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery[J].Journal of Power Sources,2016,307:587-592.
[26] Pires J,Timperman L,Castets A,et al.Role of propane sultone as an additive to improve the performance of a lithium-rich cathode material at a high potential[J].RSC Advances,2015,5(52):4288-4294.
[27] Zheng X,Wang X,Cai X,et al.Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J].ACS Applied Materials & Interfaces,2016,8(44):30116-30125.
[28] Tu W,Xing L,Xia P,et al.Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature[J].Electrochimica Acta,2016,204:192-198.
[29] Rong H,Xu M,Zhu Y,et al.A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery[J].Journal of Power Sources,2016,332:312-321.
[30] Han J,Kim K,Lee Y,et al.Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J].Advanced Materials,2018:1804822.
[1] 陈宁, 刘斌, 杜燕萍, 张鹏, 常薇, 郑长征. SnO2复合材料作为锂离子电池负极的研究进展[J]. 现代化工, 2020, 40(2): 28-31.
[2] 丘德立, 陈东, 郑宝成. Si@PNC复合材料应用于高性能锂离子电池的研究[J]. 现代化工, 2020, 40(2): 114-117.
[3] 徐祎晟, 张友祥. 含铝化合物表面包覆对富锂材料(Li1.2[Mn0.54Co0.13Ni0.13]O2)性能的影响[J]. 现代化工, 2020, 40(1): 96-101.
[4] 李新宇, 张硕卿, 丁斌, 赵旭升, 杨全红, 徐强. 不同中心原子的MOF材料在锂(钠)离子电池中的应用[J]. 现代化工, 2019, 39(9): 44-48.
[5] 张向倩, 高月, 黄飞. 锂离子动力电池安全问题及防控技术分析[J]. 现代化工, 2019, 39(8): 7-10.
[6] 刘艳奇, 王倩, 赵震霆, 张文强, 梅毅, 廉培超. 香烟过滤嘴基多孔炭/红磷复合材料的制备及其储锂性能研究[J]. 现代化工, 2019, 39(7): 148-155,157.
[7] 王颖, 闫锋, 邵立久, 冉艳. 液体苯三唑胺盐的合成及应用[J]. 现代化工, 2019, 39(7): 97-100,102.
[8] 贾倩, 梁晓怿, 梁莉, 丁伟昌. 核桃壳基硬碳负极电极材料的制备及性能研究[J]. 现代化工, 2019, 39(5): 182-185,187.
[9] 李文博, 李世友, 张宇, 梁有维. 超高浓度电解液的研究进展[J]. 现代化工, 2019, 39(2): 14-17.
[10] 脱宽有, 毛丽萍, 李世友, 李春雷, 解莹春. 纳米线形锂离子电池正极材料的研究进展[J]. 现代化工, 2019, 39(12): 57-61.
[11] 段晓勇, 王杰, 赵政, 王俊中. 石墨烯/铁氧化物负极材料的原位制备及表征[J]. 现代化工, 2019, 39(12): 100-104,110.
[12] 邱立峰, 张无迪, 张朝峰. CNT@SnO2@C纳米复合物的制备及其储锂性能[J]. 现代化工, 2019, 39(12): 135-139.
[13] 郭畅, 张晓慧, 蔡金明, 蔡晓明. 石墨烯在纳米摩擦学中的研究进展[J]. 现代化工, 2019, 39(11): 15-19,24.
[14] 姜志浩, 刘江涛, 张传玲. 含Fe3C的碳纳米纤维材料的锂离子电池电化学性能研究[J]. 现代化工, 2019, 39(11): 78-83.
[15] 曾双威, 李春雷, 李世友, 王鹏, 雷丹. 基于LiFSI和LiTFSI电解液对铝箔腐蚀的抑制方法[J]. 现代化工, 2019, 39(1): 28-31.
[1] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
[2] . [J]. Modern Chemical Industry, 2015, 35(12): 128 -130,132 .
[3] . [J]. Modern Chemical Industry, 2017, 37(6): 103 -0106,108 .
[4] . [J]. , 2009, 29(6): 0 .
[5] . [J]. , 2010, 30(3): 0 .
[6] . [J]. , 2010, 30(7): 0 .
[7] . [J]. , 2007, 27(2): 0 .
[8] . [J]. Modern Chemical Industry, 2014, 34(2): 131 -133 .
[9] . [J]. Modern Chemical Industry, 2014, 34(4): 14 -16 .
[10] . [J]. Modern Chemical Industry, 2014, 34(7): 140 -144 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn