Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (12): 171-175    DOI: 10.16606/j.cnki.issn0253-4320.2019.12.036
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
纳米TiO2表面晶相结构转化及其光催化活性研究
卫毅梅1, 柏杨巍1, 刘丹妮1, 郭东衡2, 徐林辉1, 贾世琪1, 孙菲1
1. 中国环境科学研究院流域水污染综合治理研究中心, 北京 100012;
2. 山西省环境科学研究院, 山西 太原 030027
Transformation of surface crystalline phase structure of nano-TiO2 and accompanying photocatalytic activity
WEI Yi-mei1, BAI Yang-wei1, LIU Dan-ni1, GUO Dong-heng2, XU Lin-hui1, JIA Shi-qi1, SUN Fei1
1. Research Center for Comprehensive Control Water Pollution in River Basin, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. Shanxi Research Institute of Environmental Science, Taiyuan 030027, China
下载:  PDF (2579KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 催化剂的表面结构对于调控其催化活性具有重要的作用。采用高温煅烧的方法诱导锐钛相纳米TiO2发生金红石相转变,对其光催化活性和金红石相含量分析发现,仅少量的金红石相生成可显著提高纳米TiO2光催化活性,同时明显改变催化体系中不同自由基的相对含量。·OH的生成浓度仅有稍微增加,而O2·-的浓度从0.233 μM/h迅速增加到0.501 μM/h,说明煅烧过程诱导纳米TiO2的表面结构发生显著改变,金红石相TiO2优先在纳米TiO2颗粒表面区域生成。通过与模型金红石相/锐钛相纳米TiO2表面异质结构对比,进一步验证了表面晶相异质结构可显著提高纳米TiO2催化活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卫毅梅
柏杨巍
刘丹妮
郭东衡
徐林辉
贾世琪
孙菲
关键词:  光催化  纳米TiO2  晶相转变  表面晶相异质结构    
Abstract: The surface structure of the catalyst plays an important role in adjusting and controlling its catalytic activity.Herein,the sintering treatment method is used to induce anatase nano-TiO2 to transform into rutile phase.The phase transformation is verified by XRD patterns.It is found from analyzing the photocatalytic activity and the content of rutile phase that even a small amount of rutile phase is formed,the photocatalytic activity of nano-TiO2 can be improved greatly and the relative content of different free radicals in the catalytic system will be obviously changed.The generation concentration of ·OH enhances slightly but the generation concentration of O2-increases significantly from 0.233 μM·h-1 to 0.501 μM·h-1,which suggests an obvious structure change occurs on nano-TiO2 surface during sintering process,probably anatase-to-rutile phase transformation occurs preferentially in the surface area of nano-TiO2 particles.Compared with the model rutile/anatase nano-TiO2 surface heterostructure,it is further verified that the surface crystalline heterostructure can significantly improve the catalytic activity of nano-TiO2.To further demonstrate the formation of surface phase heterostructure,a model anatase/rutile TiO2 composite with surface heterostructure is fabricated for comparison,which verifies that the enhanced photocatalytic activity arises from the formation of surface anatase/rutile phase heterostructure.
Key words:  photocatalysis    nano-TiO2    crystalline phase transformation    surface crystalline phase heterostructure
收稿日期:  2019-09-09      修回日期:  2019-10-21          
X131.2  
通讯作者:  柏杨巍(1983-),男,博士,助理研究员,研究方向为水污染物控制,通讯联系人,baiyw@craes.org.cn。    E-mail:  baiyw@craes.org.cn
作者简介:  卫毅梅(1990-),女,硕士,工程师,研究方向为流域水污染治理,jsqgzyx@163.com
引用本文:    
卫毅梅, 柏杨巍, 刘丹妮, 郭东衡, 徐林辉, 贾世琪, 孙菲. 纳米TiO2表面晶相结构转化及其光催化活性研究[J]. 现代化工, 2019, 39(12): 171-175.
WEI Yi-mei, BAI Yang-wei, LIU Dan-ni, GUO Dong-heng, XU Lin-hui, JIA Shi-qi, SUN Fei. Transformation of surface crystalline phase structure of nano-TiO2 and accompanying photocatalytic activity. Modern Chemical Industry, 2019, 39(12): 171-175.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.12.036  或          https://www.xdhg.com.cn/CN/Y2019/V39/I12/171
[1] Zhang H,Chen G,Bahnemann D W.Photoelectrocatalytic materials for environmental applications[J].Journal of Materials Chemistry,2009,19(29):5089-5121.
[2] 王丽,赵辉,刘进,等.非均相多酸催化剂在光催化领域的应用研究进展[J].工业水处理,2019,39(8):9-18.
[3] Ollis D F,Pelizzetti E,Serpone N.Photocatalyzed destruction of water contaminants[J].Environmental Science & Technology,1991,25(9):1522-1529.
[4] Roy P,Berger S,Schmuki P.TiO2 Nanotubes:Synthesis and applications[J].Angewandte Chemie International Edition,2011,50(13):2904-2940.
[5] Schneider J,Matsuoka M,Takeuchi M,et al.Understanding TiO2 photocatalysis:Mechanisms and materials[J].Chemical Reviews,2014,114(19):9919-9986.
[6] Bourikas K,Kordulis C,Lycourghiotis A.Titanium dioxide (anatase and rutile):Surface chemistry,liquid-solid interface chemistry,and scientific synthesis of supported catalysts[J].Chemical Reviews,2014,114(19):9754-9823.
[7] Scanlon D O,Dunnill C W,Buckeridge J,et al.Band alignment of rutile and anatase TiO2[J].Nature Materials,2013,12(7):798-801.
[8] Hurum D C,Agrios A G,Gray K A,et al.Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR[J].The Journal of Physical Chemistry B,2003,107(19):4545-4549.
[9] Li G,Dimitrijevic N M,Chen L,et al.The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites[J].Journal of the American Chemical Society,2008,130(16):5402-5403.
[10] Zhou Y,Fichthorn K A.Microscopic view of nucleation in the anatase-to-rutile transformation[J].The Journal of Physical Chemistry C,2012,116(14):8314-8321.
[11] Carneiro J T,Savenije T J,Moulijn J A,et al.How phase composition influences optoelectronic and photocatalytic properties of TiO2[J].The Journal of Physical Chemistry C,2011,115(5):2211-2217.
[12] 黄兵华,张晓飞,宋磊,等.TiO2光催化水处理技术综述[J].水处理技术,2014,40(3):11-21.
[13] Imanishi A,Fukui K.Atomic-scale surface local structure of TiO2 and its influence on the water photooxidation process[J].The Journal of Physical Chemistry Letters,2014,5(12):2108-2117.
[14] Zhao L,Chen X,Wang X,et al.One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis[J].Advanced Materials,2010,22(30):3317-3321.
[15] Li Y,Zhang W,Niu J,et al.Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J].ACS Nano,2012,6(6):5164-5173.
[16] Su R,Bechstein R,Sø L,et al.How the anatase-to-rutile ratio influences the photoreactivity of TiO2[J].The Journal of Physical Chemistry C,2011,115(49):24287-24292.
[17] Ma R,Chen T.Checking the synergetic effect between anatase and rutile[J].The Journal of Physical Chemistry C,2019,123(32):19479-19485.
[18] Zhang J,Nosaka Y.Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types[J].The Journal of Physical Chemistry C,2014,118(20):10824-10832.
[19] 李明洁,喻泽斌,陈颖,等.TiO2光催化降解PFOA的反应动力学及机制研究[J].环境科学,2014,35(7):2612-2619.
[20] Zhang J,Xu Q,Feng Z,et al.Importance of the relationship between surface phases and photocatalytic activity of TiO2[J].Angewandte Chemie International Edition,2008,47(9):1766-1769.
[1] 陈和祥, 赵春宝, 张君, 朱宪忠, 罗志明. Er3+掺杂纳米TiO2的制备与光催化降解性能研究[J]. 现代化工, 2019, 39(9): 106-110.
[2] 张柏慧, 闫锋, 邵立久, 冉艳, 李昊, 王颖. TiO2/Ni-ZSM-5催化剂的光催化氧化脱硫性能研究[J]. 现代化工, 2019, 39(8): 104-109.
[3] 曾丹丹, 许第发, 周艺, 赵珍, 张世英. CdTe-QDs/g-C3N4的合成及其高效可见光光催化产氢研究[J]. 现代化工, 2019, 39(8): 110-114,119.
[4] 王晓丽, 张琳萍, 周培文, 钟毅, 徐红, 隋晓锋, 冯雪凌, 陈支泽, 王碧佳, 毛志平. LaVO4光催化剂的制备及其降解抗生素的研究[J]. 现代化工, 2019, 39(8): 93-95,99.
[5] 王海洋, 沈勇, 徐丽慧, 王黎明, 潘虹, 吴敏. 花状CuS微米球的制备及其光催化性能研究[J]. 现代化工, 2019, 39(6): 116-120.
[6] 蔡磊, 翟保改, 徐月华, 黄远明. 可见光下钴掺杂氧化锌光催化活性的调控[J]. 现代化工, 2019, 39(6): 89-94.
[7] 孙文, 董应虎, 张瑞卿, 方俊晓, 钟永录, 王昆昆. 不同元素掺杂TiO2纳米管的研究进展[J]. 现代化工, 2019, 39(5): 29-32.
[8] 宋坤莉, 赵东风, 罗庆芳, 邢亚斌, 李石. 类石墨相氮化碳的研究与应用[J]. 现代化工, 2019, 39(5): 52-55,57.
[9] 田勤奋, 谢伟臻, 曹圳, 刘美珍, 庄建东. 微波溶剂热法制备ZnGa2O4及其在光催化氧化除As(Ⅲ)中的应用[J]. 现代化工, 2019, 39(4): 116-120,122.
[10] 方书起, 曹奇, 常春, 陈俊英. 以TiO2为光催化剂的反应器结构研究进展[J]. 现代化工, 2019, 39(3): 45-50.
[11] 李震东, 张仕龙, 王振华, 符春林. MOFs改性衍生物光催化材料研究进展[J]. 现代化工, 2019, 39(3): 59-63.
[12] 王美城, 王敏, 张宇州, 姚思聪, 王军荣, 陈尧. 页岩气产出水的可行性处理工艺研究[J]. 现代化工, 2019, 39(3): 198-201.
[13] 邹平, 任志豪, 朱鹏飞, 谢蕊蔓, 缑艳霞, 张琦. 磁性可见光催化剂Ce-BiVO4/Fe3O4的制备及性能研究[J]. 现代化工, 2019, 39(2): 83-87.
[14] 盛宇, 徐丽慧, 沈勇, 王黎明, 潘虹. 疏水型SiO2/TiO2复合气凝胶的制备及光催化性能研究[J]. 现代化工, 2019, 39(2): 98-102.
[15] 郎大宁, 李怡招, 曹亚丽, 贾殿赠. 氧化锌/石墨烯复合物的固相制备及气敏、光催化应用[J]. 现代化工, 2019, 39(12): 130-134.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn