Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (12): 125-129,134    DOI: 10.16606/j.cnki.issn0253-4320.2019.12.027
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
碳化钙基炭材料的制备及其在超级电容器中的应用
毛贝贝1, 陈志萍1, 杨晓峰1, 张越鹏1, 李重庆1, 杨寅帅2
1. 中北大学理学院, 山西 太原 030051;
2. 大连理工大学化工学院, 辽宁 大连 116024
Synthesis of calcium carbide-based carbon materials and applications in super capacitor
MAO Bei-bei1, CHEN Zhi-ping1, YANG Xiao-feng1, ZHANG Yue-peng1, LI Chong-qing1, YANG Yin-shuai2
1. School of Science, North University of China, Taiyuan 030051, China;
2. School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
下载:  PDF (4119KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以电石(CaC2)为碳源,通过氧化法合成炭材料(CM),并用氢氧化钾(KOH)进一步活化,制得具有微观细孔结构的活化炭材料(ACM)。利用XRD、Raman、FT-IR测试了CM的结构。利用FESEM、BET、循环伏安法(CV)和恒流充放电(GCD)探究了活化对炭材料结构、形貌和电容性能的影响。结果表明,氧化法制得的CM具有一定程度的石墨化,同时表面发生了部分氧化。活化后炭材料表面呈疏松状,比表面积和总孔容均变大,当活化炭碱比(RCM/KOH)为0.5时,比表面积为1 114.3 m2/g,总孔容达到0.35 cm3/g。炭碱比活化的炭材料ACM0.5电极在0.64 mol/L的K2SO4电解质溶液中,电流密度为0.5 A/g时,比电容达165.47 F/g,可作为超级电容器的电极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛贝贝
陈志萍
杨晓峰
张越鹏
李重庆
杨寅帅
关键词:  碳化钙  炭材料  氧化法  KOH活化  超级电容器    
Abstract: Carbon material (CM) is synthesized by oxidation method with calcium carbide as raw material,and further activated by a chemical method using potassium hydroxide (KOH) as activator to obtain activated carbon material (ACM) with microscopic pore structure.The structure of CM is analyzed by XRD,Raman,and FT-IR.The effects of activation on the structure,morphology and capacitance properties of carbon material are investigated by means of FESEM,BET,cyclic voltammetry (CV) and galvanostatic charge and discharge (GCD).The results show that the CM synthesized by the oxidation method has a certain degree of graphitization and its surface is partly oxidized.ACM's surface shows a loose shape,with larger specific surface area and total pore volume than CM.The specific surface area and total pore volume of ACM0.5 reaches 1,114.3 m2·g-1 and 0.35 cm3·g-1,respectively when the carbon material/KOH ratio (RCM/KOH) is 0.5.In a 0.64 mol·L-1 K2SO4 electrolyte solution,the specific capacitance of ACM0.5 reaches 165.47 F·g-1 at a current density of 0.5 A·g-1,which is higher than that of CM electrode prepared by oxidation method,and can be used as an electrode material for super capacitor.
Key words:  calcium carbide    carbon materials    oxidation method    activation by KOH    super capacitor
收稿日期:  2019-08-15      修回日期:  2019-10-08          
O646.54  
  TQ15  
基金资助: 山西省自然科学基金项目(201801D121066);山西省留学人员科技活动择优资助项目(2016);山西省131领军人才项目(2016);超重力化工山西省重点实验室(CZL201507)
通讯作者:  陈志萍(1975-),女,博士,副教授,研究方向为功能材料的制备及性能研究,通讯联系人,Zhipingchen2008@126.com    E-mail:  Zhipingchen2008@126.com
作者简介:  毛贝贝(1993-),女,硕士研究生,研究方向为电极材料的制备,1173595734@qq.com
引用本文:    
毛贝贝, 陈志萍, 杨晓峰, 张越鹏, 李重庆, 杨寅帅. 碳化钙基炭材料的制备及其在超级电容器中的应用[J]. 现代化工, 2019, 39(12): 125-129,134.
MAO Bei-bei, CHEN Zhi-ping, YANG Xiao-feng, ZHANG Yue-peng, LI Chong-qing, YANG Yin-shuai. Synthesis of calcium carbide-based carbon materials and applications in super capacitor. Modern Chemical Industry, 2019, 39(12): 125-129,134.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.12.027  或          https://www.xdhg.com.cn/CN/Y2019/V39/I12/125
[1] Zhang L L,Zhao X S.Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520-2531.
[2] Frackowiak E,Francois Béguin.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.
[3] Pandolfo A G,Hollenkamp A F.Carbon properties and their role in supercapacitors[J].Journal of Power Sources,2006,157(1):11-27.
[4] 李晶,黄可龙,刘业翔.超级电容器用活性炭的制备与电化学表征[J].材料科学与工艺,2009,17(1):1-4.
[5] Ugarte,Daniel.Curling and closure of graphitic networks under electron-beam irradiation[J].Nature,1992,359(6397):707-709.
[6] Han F D,Yao,B,Bai Y J.Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries[J].Journal of Physical Chemistry C,2011,115(18):8923-8927.
[7] Novoselov K S,Geim A K,Morozov Sv,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[8] 李俊,王先友,黄庆华.炭气凝胶的制备及其在超级电容器中的应用[J].电源技术,2006,30(7):555-559.
[9] Futaba D N,Hata Kenji,Yamada Takeo,et al.Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J].Nature Materials,2006,5(12):987-994.
[10] 于艳艳,关云锋,丛野,等.碳化硅衍生碳的制备及其超级电容性能[J].无机化学学报,2017,33(5):853-859.
[11] Yan J,Wei T,Qiao W,et al.A high-performance carbon derived from polyaniline for supercapacitors[J].Electrochemistry Communications,2010,12(10):1279-1282.
[12] Hu M,Reboul J,Furukawa S,et al.Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J].Journal of the American Chemical Society,2012,134(6):2864-2867.
[13] Wang Jiacheng,Stefan Kaskel.KOH activation of carbon-based materials for energy storage[J].Journal of Materials Chemistry:An Interdisciplinary Journal dealing with Synthesis,Structures,Properties and Applications of Materials,Particulary Those Associated with Advanced Technology,2012,22(45):23710-23725.
[14] Tang L,Wang Y,Li Y,et al.Preparation,structure,and electrochemical properties of reduced graphene sheet films[J].Advanced Functional Materials,2009,19(17):2782-2789.
[15] 许聚良,鄢文,吴大军.XRD分峰拟合法测定炭材料的石墨化度和结晶度[J].武汉科技大学学报,2009,32(5):522-525.
[16] He X J,Ling P H,Qiu J S,et al.Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J].Journal of Power Sources,2013,240:109-113.
[17] 秦川丽,董楠,谭强,等.KOH活化对超级电容器用活性炭的影响[J].黑龙江大学自然科学学报,2009,26(1):35-38,42.
[18] Zhang J,Gong L,Jiang J,et al.Preparation of activated carbon from waste camellia oleifera shell for supercapacitor application[J].Journal of Solid State Electrochemistry,2012,16(6):2179-2186.
[19] Otowa T,Tanibata R,Itoh M.Production and adsorption characteristics of MAXSORB:High-surface-area active carbon[J].Gas Separation & Purification,1993,7(4):241-245.
[20] Lozano-Castelló D,Calo J M,Cazorla-Amorós D,et al.Carbon activation with KOH as explored by temperature programmed techniques,and the effects of hydrogen[J].Carbon,2007,45(13):2529-2536.
[21] Raymundo-Pinero E,Azais P,Cacciaguerra T,et al.KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J].Carbon,2005,43(4):786-795.
[1] 许世超, 穆春盛, 朱天哲, 乔阳. NiCo2O4修饰活性炭纤维作为超级电容器正极材料及其性能研究[J]. 现代化工, 2019, 39(8): 143-146.
[2] 赵际沣, 程青, 黄继忠, 罗胜利. 磁性多孔炭材料的制备及其Cr(Ⅵ)吸附行为研究[J]. 现代化工, 2019, 39(7): 138-142.
[3] 王辉, 梁伟. 负载Pt的透明TiO2纳米管薄膜的非对称性光电性能[J]. 现代化工, 2019, 39(6): 153-158.
[4] 史纪峰, 孙明轩. 一步乙醇燃烧法合成C-CeO2超级电容器电极材料[J]. 现代化工, 2019, 39(6): 162-165.
[5] 杨志远, 廖宏斌, 孟茁越, 薛文英, 李银艳. 类石墨烯多孔材料的制备及其气体吸附分离特性[J]. 现代化工, 2019, 39(6): 95-99.
[6] 朱磊, 俞泽民, 周子豪, 朱明亮. 一步水热法制备二氧化钛纳米线-还原氧化石墨烯复合材料及其超级电容器性能研究[J]. 现代化工, 2019, 39(5): 146-150.
[7] 王新海, 马珍珍. 电化学法制备的聚苯胺/石墨烯复合材料的微结构及性能研究[J]. 现代化工, 2019, 39(5): 156-159.
[8] 李娜, 景红霞, 黄晶, 李龙祥, 焦纬洲, 李慧. 层状双金属氢氧化物的改性及其在超级电容器中的应用进展[J]. 现代化工, 2019, 39(12): 44-47,51.
[9] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[10] 邵宗明, 刘晓雨, 熊凡. WO3/FeOOH的制备与电化学性能研究[J]. 现代化工, 2018, 38(11): 183-185.
[11] 赵如恒, 李凯, 宁平, 梅毅, 孙鑫, 王驰. 生物炭干法同时脱硫脱硝脱汞研究进展[J]. 现代化工, 2018, 38(10): 71-75.
[12] 原诗瑶, 侯彬, 周杰. 泡沫镍在电容器和微生物燃料电池方面的应用[J]. 现代化工, 2017, 37(8): 67-71.
[13] 温雅琼, 李作鹏, 邢宝岩, 王玉珍, 沈腊珍, 郭永. Ni(OH)2/石墨烯/Co(OH)2电极材料制备及其电容性能研究[J]. 现代化工, 2017, 37(7): 68-73.
[14] 刘志森, 张志远, 徐鑫. 二氧化锰为氧化剂制备多孔石墨烯@聚苯胺超级电容器材料的研究[J]. 现代化工, 2017, 37(7): 117-120.
[15] 安峰文, 罗立群, 刘斌, 孙伟, 温欣宇, 田金星. 无硫可膨胀石墨的制备及特征[J]. 现代化工, 2017, 37(4): 75-79.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn