Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (12): 89-93,99    DOI: 10.16606/j.cnki.issn0253-4320.2019.12.020
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究
刘江涛, 姜志浩, 张传玲
合肥工业大学化学与化工学院, 安徽 合肥 230009
Nickel-iron alloy nanoparticles embedded in nitrogen-doped carbon nanofiber as a high activity oxygen evolution catalyst
LIU Jiang-tao, JIANG Zhi-hao, ZHANG Chuan-ling
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
下载:  PDF (5742KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用静电纺丝法和后煅烧法制备了一种镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维的催化剂材料。通过SEM、TEM、XRD和XPS等对催化剂的形貌和组成进行分析与表征。进一步通过电化学工作站的测试证明催化剂NiFe-N-CNF-2具有优越的OER性能(10 mA/cm2的电流密度下过电势为0.4 V),甚至可以媲美商业RuO2催化剂。该方法为制备低成本和高活性析氧催化剂提供了新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘江涛
姜志浩
张传玲
关键词:  镍铁合金  纳米纤维  静电纺丝  析氧反应    
Abstract: A kind of catalyst material that NiFe alloy nanoparticles are implanted into nitrogen-doped carbon nanofibers is prepared by electrospinning and post-calcining methods.The morphology and composition of the catalyst are characterized by SEM,TEM,XRD and XPS.Further tests on electrochemical workstations prove that the prepared catalyst NiFe-N-CNF-2 shows a superior OER performance (a 0.4 V of overpotential at a 10 mA·cm-2 of current density),even comparable to commercial RuO2 catalysts.This work provides a new method for preparing low cost and high activity oxygen evolution catalyst.
Key words:  nickel-iron alloy    nanofiber    electrospinning    oxygen evolution reaction
收稿日期:  2019-02-28      修回日期:  2019-10-15          
O614.8  
基金资助: 国家自然科学基金(21431006)
通讯作者:  张传玲(1986-),女,博士,副研究员,硕士生导师,研究方向为锂离子电池及响应性材料、能源及仿生材料,通讯联系人,zhangcl@hfut.edu.cn。    E-mail:  zhangcl@hfut.edu.cn
作者简介:  刘江涛(1994-),男,硕士研究生,研究方向为新型高效纳米电催化材料,1070404874@qq.com
引用本文:    
刘江涛, 姜志浩, 张传玲. 镍铁合金纳米颗粒嵌入氮掺杂碳纳米纤维高活性析氧催化剂的研究[J]. 现代化工, 2019, 39(12): 89-93,99.
LIU Jiang-tao, JIANG Zhi-hao, ZHANG Chuan-ling. Nickel-iron alloy nanoparticles embedded in nitrogen-doped carbon nanofiber as a high activity oxygen evolution catalyst. Modern Chemical Industry, 2019, 39(12): 89-93,99.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.12.020  或          https://www.xdhg.com.cn/CN/Y2019/V39/I12/89
[1] Cao L M,Hu Y W,Tang S F,et al.Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting[J].Advance Science,2018,5(10):1800949.
[2] Zhang M,Dai Q,Zheng H,et al.Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J].Advanced Materials,2018,30(10):1705431.
[3] Huang Y,Li Z,Pei Z,et al.Solid-State rechargeable Zn/NiCo and Zn-air batteries with ultralong lifetime and high capacity:The role of a sodium polyacrylate hydrogel electrolyte[J].Advanced Energy Materials,2018,8(31):1802288.
[4] Li T,Lv Y,Su J,et al.Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction[J].Advance Science,2017,4(11):1700226.
[5] Yin J,Li Y,Lv F,et al.NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries[J].ACS Nano,2017,11(2):2275-2283.
[6] Fu Y,Yu H Y,Jiang C,et al.NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst[J].Advanced Functional Materials,2018,28(9):1705094.
[7] Cheng Q,Han S,Mao K,et al.Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability[J].Nano Energy,2018,52:485-493.
[8] Wu Z Y,Ji W B,Hu B C,et al.Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting[J].Nano Energy,2018,51:286-293.
[9] Li X,Sun X,Gao Z,et al.Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries[J].Applied Surface Science,2018,433:713-722.
[10] Chen L F,Lu Y,Yu L,et al.Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J].Energy & Environmental Science,2017,10(8):1777-1783.
[11] Zhong H X,Wang J,Zhang Y W,et al.ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts[J].Angewandte Chemie-International Edition,2014,53(51):14235-14239.
[12] Liu T,Zhao P,Hua X,et al.An Fe-N-C hybrid electrocatalyst derived from a bimetal-organic framework for efficient oxygen reduction[J].Journal of Materials Chemistry A,2016,4(29):11357-11364.
[13] Jiao L,Wan G,Zhang R,et al.From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons:Efficient oxygen reduction in both alkaline and acidic media[J].Angewandte Chemie International Edition,2018,57(28):8525-8529.
[14] Lai Q,Zhao Y,Liang Y,et al.In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction[J].Advanced Functional Materials,2016,26(45):8334-8344.
[15] Li Z,He H,Cao H,et al.Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis[J].Applied Catalysis B:Environmental,2019,240:112-121.
[16] Ou X,Li J,Zheng F,et al.In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries[J].Journal of Power Sources,2017,343:483-491.
[17] Jin H,Wang J,Su D,et al.In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J].Journal of the American Chemical Society,2015,137(7):2688-2694.
[18] Chen K,Yang H,Liang F,et al.Microwave-irradiation-assisted combustion toward modified graphite as lithium ion battery anode[J].ACS Applied Materials & Interfaces,2018,10(1):909-914.
[19] Wang X,Zhang H,Lin H,et al.Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid[J].Nano Energy,2016,25:110-119.
[20] Ahn S H,Yu X,Manthiram A."Wiring" Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media[J].Advanced Materials,2017,(26):1606534.
[1] 李璐璐, 梁欣宇, 森巴特·特尼斯别克, 李锦鹏, 何涛, 李惠军. 油水分离中静电纺纳米纤维膜应用的现状与展望[J]. 现代化工, 2019, 39(6): 59-64.
[2] 陈亚君, 汪帝, 李大伟, 魏取福. 梯度孔隙结构二醋酸纤维复合滤料的制备及过滤性能[J]. 现代化工, 2019, 39(2): 136-139.
[3] 姜志浩, 刘江涛, 张传玲. 含Fe3C的碳纳米纤维材料的锂离子电池电化学性能研究[J]. 现代化工, 2019, 39(11): 78-83.
[4] 程凤如, 孙志裕, 熊凡, 罗惜情. Fe掺杂NiO/NiSe2空心纳米球的制备及其析氧性能研究[J]. 现代化工, 2019, 39(11): 145-148.
[5] 李树锋, 罗永莎, 徐经伟, 袁亮, 海滇. 聚丙烯腈前驱体的优化及其中空碳纳米纤维的制备[J]. 现代化工, 2019, 39(11): 108-112.
[6] 刘莹, 刘钰娇, 孔晟宇, 孟凡浩. 纳米纤维素/羟丙基甲基纤维素复合膜的制备与性能研究[J]. 现代化工, 2019, 39(1): 133-137.
[7] 李可, 陈林, 牛胜杰, 郑康, 张献, 田兴友. 常压干燥工艺制备SiO2纳米纤维-SiO2复合气凝胶及其表征[J]. 现代化工, 2018, 38(8): 172-175.
[8] 马小彪, 陈思浩, 高伟. 静电纺丝制备锂离子电池负极材料多孔碳纳米纤维的研究[J]. 现代化工, 2017, 37(5): 131-134,136.
[9] 魏莉, 白盼星, 张思航, 蒋洁, 陈胜. 纯物理法制备高长径比纤维素纳米纤维的研究[J]. 现代化工, 2017, 37(2): 70-73,75.
[10] 刘卫国, 何方, 黄振, 赵坤, 魏国强, 李海滨. 甘蔗渣纳米纤维素的制备研究[J]. 现代化工, 2015, 35(5): 56-59,61.
[11] 孙剑秋, 常薇, 杨国锐, 延卫. 静电纺丝制备中空纳米纤维/纳米管研究进展[J]. 现代化工, 2014, 34(10): 22-26,28.
[12] 王磊,张立群,田明. 静电纺丝聚合物纤维的研究进展[J]. , 2009, 29(2): 0-0.
[13] 甄文娟,单志华. 纳米纤维素在绿色复合材料中的应用研究[J]. , 2008, 28(6): 0-0.
[14] 米万良 林跃生 张宝泉 李永丹. 涂层浸渍法在Al2O3片上大面积合成碳纳米纤维[J]. , 2005, 25(3): 0-0.
[15] 吴晓辉 王林格 黄勇. 电场纺丝法制备纳米纤维材料研究进展[J]. , 2004, 24(13): 0-0.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn