Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (11): 84-88    DOI: 10.16606/j.cnki.issn0253-4320.2019.11.018
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
PAA-b-PS包埋纳米Fe/Ni材料的制备及其应用研究
詹聪, 林匡飞, 陆强, 李灿, 刘馥雯, 黄凯
华东理工大学资源与环境工程学院, 化学工程环境风险评估与控制国家环境保护重点实验室, 上海 200237
Preparation of polyacrylic acid-b-polystyrene covered Fe/Ni nanoparticles and application
ZHAN Cong, LIN Kuang-fei, LU Qiang, LI Can, LIU Fu-wen, HUANG Kai
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
下载:  PDF (2640KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 合成了一种新材料聚丙烯酸-b-聚苯乙烯包埋纳米Fe/Ni颗粒(PAA-b-PS-Fe/Ni),并对1,1,1-三氯乙烷(1,1,1-TCA)的选择性脱氯效果进行了评价。由于PAA-b-PS可以防止零价铁团聚,PAA-b-PS包埋纳米Fe/Ni双金属颗粒的平均尺寸约为50 nm。在1.0 g/L Fe/Ni(Ni/Fe质量比为2%)和0.5 g/L PAA-b-PS的包埋质量浓度下,脱氯反应在240 min后达到平衡,并对200 mg/L的1,1,1-TCA的去除效率最佳(87.5%)。PAA-b-PS-Fe/Ni对1,1,1-TCA的去除效率与无机阴离子(NO3-、HCO3-和SO42-)无关,去除效率均约为88%。然而,腐植酸对1,1,1-TCA的降解有很大影响。总之,PAA-b-PS包埋纳米Fe/Ni颗粒具有选择性,并且对于降解地下水中1,1,1-TCA非常有效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹聪
林匡飞
陆强
李灿
刘馥雯
黄凯
关键词:  PAA-b-PS-Fe/Ni  选择性  脱氯  三氯乙烷  地下水    
Abstract: Polyacrylic acid-b-polystyrene covered Fe/Ni nanoparticles (PAA-b-PS-Fe/Ni),a new material,is developed and evaluated for the selective dechlorination of 1,1,1-trichloroethane (1,1,1-TCA) in the presence of potential interferents.The sizes of PAA-b-PS coated Fe/Ni bimetallic nanoparticles are averaged approximately at 50 nm because PAA-b-PS can prevent zero-valent iron from agglomeration.The dechlorination reaction reaches balance within 240 min while the removal rate of 200 mg·L-1 1,1,1-TCA achieves the best,87.5% under a 1.0 g·L-1 Fe/Ni (Ni/Fe=2%) and 0.5 g·L-1 PAA-b-PS-coated concentration.The removal efficiency of 1,1,1-TCA by PAA-b-PS-Fe/Ni is averaged at around 88%,regardless of various common inorganic anions (NO3-,HCO3- and SO42-) at different concentrations.However,humic acid has a great influence on the degradation of 1,1,1-TCA.In conclusion,PAA-b-PS-covered Fe/Ni nanoparticles have selectivity and are highly effective for the degradation of 1,1,1-TCA from groundwater.
Key words:  PAA-b-PS-Fe/Ni    selectivity    dechlorination    1,1,1-TCA    groundwater
收稿日期:  2019-01-09      修回日期:  2019-09-15           出版日期:  2019-11-20
X523  
基金资助: 国家自然科学基金项目(51708223,41301329);上海市科学技术委员会资助项目(17DZ1202304)
通讯作者:  林匡飞(1962-),男,博士,教授,研究方向为地下污染水处理,通讯联系人,kflin@ecust.edu.cn。    E-mail:  kflin@ecust.edu.cn
作者简介:  詹聪(1993-),男,硕士研究生,主要研究方向为地下水中氯代脂肪烃的去除,congzsz@163.com
引用本文:    
詹聪, 林匡飞, 陆强, 李灿, 刘馥雯, 黄凯. PAA-b-PS包埋纳米Fe/Ni材料的制备及其应用研究[J]. 现代化工, 2019, 39(11): 84-88.
ZHAN Cong, LIN Kuang-fei, LU Qiang, LI Can, LIU Fu-wen, HUANG Kai. Preparation of polyacrylic acid-b-polystyrene covered Fe/Ni nanoparticles and application. Modern Chemical Industry, 2019, 39(11): 84-88.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.11.018  或          https://www.xdhg.com.cn/CN/Y2019/V39/I11/84
[1] Jean C B,Joel G B,Frank K,et al.Dendrochemistry of multiple releases of chlorinated solvents at a former industrial site[J].Environmental Science & Technology,2012,46(17):9541-9547.
[2] Charlotte S,Neal D D,Maria H,et al.Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface-acritical review[J].Water Research,2011,45(9):2701-2723.
[3] Daniel H,Yumiko A,Mette M B,et al.Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR[J].Journal of Contaminant Hydrology,2011,119(1-4):69-79.
[4] Ivonne N,Marcell N,Andreas K,et al.Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques,microcosm studies and molecular biomarkers[J].Chemosphere,2007,67(2):300-311.
[5] Mio T,Yoshishige K,Eiji W,et al.Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard[J].Journal of Contaminant Hydrology,2011,124(1-4):14-24.
[6] Ji C,Meng L,Wang H.Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres:Preparation and microcosm study[J].Environmental Science & Pollution Research,2018,1(1):1-12.
[7] 朱雪强,韩宝平.零价铁修复受三氯乙烯污染地下水的实验研究[J].环境工程学报,2012,6(1):94-98.
[8] Li H,Qiu Y F,Wang X L,et al.Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions[J].Chemosphere,2017,169:534-541.
[9] Brian C R,Brady S F,R L P,et al.Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents[J].Environmental Science & Technology,2010,44(9):3455-3461.
[10] 赵云,祝方,任文涛.绿色合成纳米零价铁镍去除地下水中硝酸盐的动力学研究[J].环境工程学报,2018,36(7):71-76.
[11] Bhattacharjee S,Ghoshal S.Phase transfer of palladized nanoscale zero valent iron for environmental remediation of trichloroethene[J].Environmental Science & Technology,2016,50(16):8631-8639.
[12] Wang Y B,Zhao H Y,Zhao G H.Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants[J].Applied Catalysis B Environmental,2015,164:396-406.
[13] Sabine P,Dario F,Annette E S,et al.Synthesis of nickel nanoparticles with N-doped graphene shells for catalytic reduction reactions[J].Chem Cat Chem,2016,8(1):129-134.
[14] Xiao J N,Gao B Y,Yue Q Y,et al.Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron:Characterization,kinetics and mechanism[J].Chemical Engineering Journal,2015,262(15):1226-1236.
[15] Macharla A K,Sungjun B,Seunghee H,et al.Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni[J].Journal of Hazardous Materials,2017,340(15):399-406.
[16] Jaewon C,Heesoo W,Myoung S K,et al.Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads[J].Journal of Hazardous Materials,2015,293(15):30-36.
[17] Cyrille B,Gilles B,Jeanjacques R,et al.Synthesis of macromonomers of acrylic acid by telomerization:Application to the synthesis of polystyrene-g-poly(acrylic acid) copolymers[J].Journal of Polymer Science Part A,2007,45(3):395-415.
[18] Li T L,Wang W,Li S J,et al.Dechlorination of trichloroethylene in groundwater by nanoscale bimetallic Fe/Pd particles[J].Journal of Water Resource and Protection,2009,1(2):78-83.
[19] Jiang Z M,Zhang W M,Lv L,et al.Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins:Role of surface functional groups[J].Water Research,2011,45(6):2191-2198.
[1] 陈建华, 黄龙, 易玉峰, 郑枝源, 周围. 电解银催化剂催化乳酸乙酯制丙酮酸乙酯的选择性氧化研究[J]. 现代化工, 2019, 39(S1): 135-141.
[2] 马英利, 高凤雨, 贾广如, 黄世平, 赵顺征, 易红宏, 唐晓龙. SCR脱硝催化剂的发展、应用及其成型工艺综述[J]. 现代化工, 2019, 39(8): 33-37.
[3] 葛跃娜, 刘静, 丁宁, 何牧, 周晓龙. DH-2催化C4烯烃选择性叠合的研究[J]. 现代化工, 2019, 39(7): 117-121.
[4] 孔劼琛, 刘媛, 高志贤, 张玉龙. Co基催化剂用于低碳醇合成反应研究进展[J]. 现代化工, 2019, 39(6): 26-30,32.
[5] 宋爽, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征. 含氨废气的催化氧化研究进展[J]. 现代化工, 2019, 39(6): 31-35.
[6] 莫恒亮, 李锁定, 杨志涛, 唐阳, 万平玉, 陈咏梅, 孟晓冬. 高选择性铵离子筛α-MnO2-Na的制备及应用研究[J]. 现代化工, 2019, 39(6): 85-88,90.
[7] 姚佳, 刘少光, 林文松, 汪楷迪. Ce-Cr-Ni/TiO2催化剂的CO-SCR性能研究[J]. 现代化工, 2019, 39(5): 123-127.
[8] 王荀, 吕永康. 愈创木酚催化氢解制取苯酚研究进展[J]. 现代化工, 2019, 39(4): 36-39,41.
[9] 张晓晓, 王亚培, 徐军, 徐文鹏. HZSM-22添加量对SAPO-17/HZSM-22复合分子筛的合成及MTO性能的影响[J]. 现代化工, 2019, 39(4): 158-161,163.
[10] 陈世宇, 贾庆明, 支云飞, 陕绍云, 苏红莹. 用于CO2和环氧化物开环加成的负载型催化剂研究进展[J]. 现代化工, 2019, 39(3): 16-20.
[11] 徐晨辰, 张策策, 赵明, 韩静, 孙锦昌, 张谦温. 乙炔选择性加氢研究进展和发展趋势[J]. 现代化工, 2019, 39(11): 58-61.
[12] 张道军, 马子然, 王宝冬, 竹涛, 王红妍, 李歌, 周佳丽. SCR脱硝技术在非电行业烟气治理中的应用进展[J]. 现代化工, 2019, 39(10): 24-28.
[13] 董祥芝, 马勇, 侯春平, 张宝亮, 张和鹏, 张秋禹. 温敏型蛋白质分子印迹聚合物的制备及性能研究[J]. 现代化工, 2019, 39(10): 86-91.
[14] 刘凯, 田原宇, 张君涛. 萘选择性催化加氢催化剂研究进展[J]. 现代化工, 2018, 38(9): 45-49.
[15] 张耀日, 霍志萍, 张丽娟, 冯晴, 臧甲忠, 于海斌. SSZ-13分子筛合成及应用进展[J]. 现代化工, 2018, 38(9): 54-59.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 109 -114 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 115 -117 .
[3] . [J]. Modern Chemical Industry, 2015, 35(8): 141 -143,145 .
[4] . [J]. Modern Chemical Industry, 2015, 35(8): 144 -146 .
[5] . [J]. Modern Chemical Industry, 2015, 35(8): 165 -168 .
[6] . [J]. Modern Chemical Industry, 2015, 35(9): 21 -25 .
[7] . [J]. Modern Chemical Industry, 2015, 35(9): 67 -68,70 .
[8] . [J]. Modern Chemical Industry, 2015, 35(9): 69 -73 .
[9] . [J]. Modern Chemical Industry, 2015, 35(9): 81 -84 .
[10] . [J]. Modern Chemical Industry, 2015, 35(9): 152 -155 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn