Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (11): 40-43    DOI: 10.16606/j.cnki.issn0253-4320.2019.11.009
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
染料敏化太阳能电池TiO2光阳极的研究进展
张卫国, 雷瀚翔, 姚素薇, 王宏智
天津大学化工学院, 天津 300350
Research progress in TiO2 photo-anode for dye-sensitized solar cells
ZHANG Wei-guo, LEI Han-xiang, YAO Su-wei, WANG Hong-zhi
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
下载:  PDF (1271KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 对TiO2光阳极的性质、存在的问题以及改进方法进行综述,并对未来的研究趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张卫国
雷瀚翔
姚素薇
王宏智
关键词:  染料敏化太阳能电池  二氧化钛  光阳极    
Abstract: The properties,existing problems and latest research development of TiO2 photo-anode are reviewed and the future research trends are prospected.
Key words:  dye-sensitized solar cell    TiO2    photo-anode
收稿日期:  2019-03-19      修回日期:  2019-09-16           出版日期:  2019-11-20
TM914.4  
通讯作者:  王宏智(1972-),男,博士,副教授,研究方向为超级电容器、高分子材料、电沉积,通讯联系人,wanghz@tju.edu.cn。    E-mail:  wanghz@tju.edu.cn
作者简介:  张卫国(1971-),男,博士,副教授,研究方向为光电化学、电沉积、高能化学电源,zwg@tju.edu.cn
引用本文:    
张卫国, 雷瀚翔, 姚素薇, 王宏智. 染料敏化太阳能电池TiO2光阳极的研究进展[J]. 现代化工, 2019, 39(11): 40-43.
ZHANG Wei-guo, LEI Han-xiang, YAO Su-wei, WANG Hong-zhi. Research progress in TiO2 photo-anode for dye-sensitized solar cells. Modern Chemical Industry, 2019, 39(11): 40-43.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.11.009  或          https://www.xdhg.com.cn/CN/Y2019/V39/I11/40
[1] Huang J,Jing H X,Li N,et al.Fabrication of magnetically recyclable SnO2-TiO2/CoFe2O4 hollow core-shell photocatalyst:Improving photocatalytic efficiency under visible light irradiation[J].Journal of Solid State Chemistry,2019,271:103-109.
[2] Kartikay P,Nemala S S,Mallick S.One-dimensional TiO2 nanostructured photoanode for dye-sensitized solar cells by hydrothermal synthesis[J].Journal of Materials Science Materials in Electronics,2017,28(15):11528-11533.
[3] Seidalilir Z,Malekfar R,Wu H P,et al.High-performance and stable gel-state dye-sensitized solar cells using anodic TiO2 nanotube arrays and polymer-based gel electrolytes[J].ACS Applied Materials & Interfaces,2015,7(23):12731-12739.
[4] Zheng Y,Liu B,Cao P,et al.Fabrication of flower-like mesoporous TiO2 hierarchical spheres with ordered stratified structure as an anode for lithium-ion batteries[J].Journal of Materials Science & Technology,2019,35(4):667-673.
[5] Lei B X,Zheng X F,Qiao H K,et al.A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells[J].Electrochimica Acta,2014,149:264-270.
[6] Zhang Y,Cai J,Ma Y,et al.Mesocrystalline TiO2 nanosheet arrays with exposed[1] facets:Synthesis via topotactic transformation and applications in dye-sensitized solar cells[J].Nano Research,2017,10(8):2610-2625.
[7] Zhang J,Li Q,Li S,et al.An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells[J].Journal of Power Sources,2014,268:941-949.
[8] Zhao F Y,Ma R,Jiang Y J.Strong efficiency improvement in dye-sensitized solar cells by novel multi-dimensional TiO2 photoelectrode[J].Applied Surface Science,2018,434:11-15.
[9] Li Z Q,Que Y P,Mo L E,et al.One-pot synthesis of mesoporous TiO2 micropheres and its application for high-efficiency dye-sensitized solar cells[J].ACS Applied Materials & Interfaces,2015,7(20):10928-10934.
[10] Duan Y,Tang Q,He B,et al.Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes[J].Journal of Power Sources,2015,284:349-354.
[11] Yang W,Chen X,Liu L,et al.Light-scattering photoanodes from double-layered mesoporous TiO2 nanoparticles/SiO2 nanospheres for dye-sensitized solar cells[J].Electrochimica Acta,2016,213:1-7.
[12] Hong Ha Thi V,Atabaev T S,De P C,et al.TiO2 nanofiber/nanoparticles composite photoelectrodes with improved light harvesting ability for dye-sensitized solar cells[J].Electrochimica Acta,2016,193:166-171.
[13] Chen Y Z,Wu R J,Lin L Y,et al.Novel synthesis of popcorn-like TiO2 light scatterers using a facile solution method for efficient dye-sensitized solar cells[J].Journal of Power Sources,2019,413:384-390.
[14] Cai H,Li J,Xu X,et al.Nanostructured composites of one-dimensional TiO2 and reduced graphene oxide for efficient dye-sensitized solar cells[J].Journal of Alloys and Compounds,2017,697:132-137.
[15] Yang L,Leung W W F.Electrospun TiO2 Nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells[J].Advanced Materials,2013,25(12):1792-1795.
[16] Kumari M,Perera C S,Dassanayake B S,et al.Highly efficient plasmonic dye-sensitized solar cells with silver nanowires and TiO2 nanofibres incorporated multi-layered photoanode[J].Electrochimica Acta,2019,298:330-338.
[17] Manoharan K,Venkatachalam P.Photoelectrochemical performance of dye sensitized solar cells based on aluminum-doped titanium dioxide structures[J].Materials Science in Semiconductor Processing,2015,30:208-217.
[18] Park J Y,Kim C S,Okuyama K,et al.Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells[J].Journal of Power Sources,2016,306:764-771.
[19] Song L L,Wei A X,Li Z Y,et al.Synthesis and up-conversion properties of Ho3+-Yb3+-F- tri-doped TiO2 nanoparticles and their application in dye-sensitized solar cells[J].Materials Research Bulletin,2017,88:1-8.
[20] Gupta A K,Srivastava P,Bahadur L.Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell[J].Applied Physics a-Materials Science & Processing,2016,122(8):724.
[21] Raja R,Govindaraj M,Antony M D,et al.Effect of TiO2/reduced graphene oxide composite thin film as a blocking layer on the efficiency of dye-sensitized solar cells[J].Journal of Solid State Electrochemistry,2017,21(3):891-903.
[22] Parthiban S,Anuratha K S,Arunprabaharan S,et al.Enhanced dye-sensitized solar cell performance using TiO2:Nb blocking layer deposited by soft chemical method[J].Ceramics International,2015,41(1):205-209.
[23] Elzarka A,Liu N,Hwang I,et al.Large-diameter TiO2 nanotubes enable wall engineering with conformal hierarchical decoration and blocking layers for enhanced efficiency in dye-sensitized solar cells (DSSC)[J].Chemistry-A European Journal,2017,23(53):12995-12999.
[24] Saidi W,Hfayedh N,Megriche A,et al.Hydrophilic/hydrophobic and optical properties of B2O3 doped TiO2 sol-gel thin films:Effect of B2O3 content,film thickness and surface roughness[J].Materials Chemistry and Physics,2018,215:31-39.
[25] Xu J,Wang G,Fan J,et al.g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells[J].Journal of Power Sources,2015,274:77-84.
[26] Knorr F J,Zhang D,McHale J L.Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2[J].Langmuir,2007,23(17):8686-8690.
[27] So S,Hwang I,Schmuki P.Hierarchical DSSC structures based on "single walled" TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%[J].Energy & Environmental Science,2015,8(3):849-854.
[28] Han Z,Zhao Z,Du Z,et al.A novel anode material of TiCl4 treatment on Ag/TiO2 in DSSC[J].Materials Letters,2014,136:424-426.
[29] Lu D,Li J,Lu G,et al.Enhanced photovoltaic properties of dye-sensitized solar cells using three-component CNF/TiO2/Au heterostructure[J].Journal of Colloid and Interface Science,2019,542:168-176.
[30] Suresh S,Unni G E,Satyanarayana M,et al.Ag@Nb2O5 plasmonic blocking layer for higher efficiency dye-sensitized solar cells[J].Dalton Transactions,2018,47(13):4685-4700.
[31] Shan C H,Zhang H,Chen W L,et al.Pure inorganic D-A type polyoxometalate/reduced graphene oxide nanocomposite for the photoanode of dye-sensitized solar cells[J].Journal of Materials Chemistry A,2016,4(9):3297-3303.
[1] 孙文, 董应虎, 张瑞卿, 方俊晓, 钟永录, 王昆昆. 不同元素掺杂TiO2纳米管的研究进展[J]. 现代化工, 2019, 39(5): 29-32.
[2] 施岩, 李娟, 兰奕, 李亚如, 王晓蔷, 陈成, 苏飞铭, 苏振生. Ni、Co基催化剂催化糠醛生成环戊酮和环戊醇的研究[J]. 现代化工, 2019, 39(4): 121-125.
[3] 代岩, 王硕, 田黎明, 肖武. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018, 38(7): 89-92.
[4] 许世超, 董凯, 多浩, 朱天哲, 乔阳. 基于光催化技术的VOCs空气净化器的设计及研究[J]. 现代化工, 2018, 38(6): 117-121.
[5] 万燕, 魏任星, 卢挺, 魏顺安, 季金苟, 谢方奎. 二氧化钛多相光催化降解有机污染物影响因素研究进展[J]. 现代化工, 2018, 38(5): 53-56,58.
[6] 王露, 陈王觅, 衣守志. 纳米隔热保温涂料的制备与性能研究[J]. 现代化工, 2018, 38(4): 165-168.
[7] 陈贝, 石凯, 李巧玲. Ag (I)敏化TiO2的可见光催化性能研究[J]. 现代化工, 2018, 38(2): 132-134,136.
[8] 徐英晗, 闫冰. 低共熔溶剂条件下ZnO掺杂TiO2微球的制备及性能[J]. 现代化工, 2018, 38(12): 158-161.
[9] 张曼莹, 邬艳君, 刘姿铔, 成程. 纳米银修饰介孔二氧化钛及其可见光下光催化抗菌性能的研究[J]. 现代化工, 2018, 38(11): 77-81.
[10] 关恩昊, 岳红彦, 高鑫, 王宝, 王婉秋, 王钊, 宋姗姗, 张宏杰, 王唯一. 二氧化钛-石墨烯复合材料的制备及在超级电容器中的应用[J]. 现代化工, 2018, 38(1): 40-43.
[11] 王煜炎, 吴刚强, 郎中敏, 王亚雄, 徐绍平. Ce助剂对负载型Ni/TiO2催化剂CO甲烷化性能的影响[J]. 现代化工, 2017, 37(9): 107-109,111.
[12] 李东泽, 李石, 赵东风, 江少文, 徐闪, 王卫红, 王永强. 用于VOCs降解的TiO2光催化剂的研究进展[J]. 现代化工, 2017, 37(11): 39-42.
[13] 丁鹏, 鲁墨弘, 朱劼, 李明时, 单玉华. 掺氮氧化石墨烯二氧化钛复合材料的合成及其光催化活性[J]. 现代化工, 2016, 36(8): 101-104.
[14] 孙善富, 孙明轩, 方亚林, 王莹. 染料敏化太阳能电池碳材料对电极的研究进展[J]. 现代化工, 2016, 36(6): 24-27.
[15] 翟友存, 宁晓宇, 张欣, 冯炜, 刘博. 微波辅助纳米二氧化钛的低温负载[J]. 现代化工, 2016, 36(5): 53-56.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 129 -132 .
[2] . [J]. Modern Chemical Industry, 2015, 35(9): 88 -92 .
[3] . [J]. Modern Chemical Industry, 2015, 35(9): 101 -104,106 .
[4] . [J]. Modern Chemical Industry, 2015, 35(9): 113 -116 .
[5] . [J]. Modern Chemical Industry, 2015, 35(9): 148 -151,153 .
[6] . [J]. Modern Chemical Industry, 2015, 35(9): 182 -186 .
[7] . [J]. Modern Chemical Industry, 2015, 35(9): 187 -188 .
[8] . [J]. Modern Chemical Industry, 2015, 35(11): 19 -22 .
[9] . [J]. Modern Chemical Industry, 2015, 35(11): 23 -26,28 .
[10] . [J]. Modern Chemical Industry, 2015, 35(11): 77 -80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn