Please wait a minute...
 
最新公告: 关于寒假期间版面费发票延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (11): 15-19,24    DOI: 10.16606/j.cnki.issn0253-4320.2019.11.004
  技术进展 本期目录 | 过刊浏览 | 高级检索 |
石墨烯在纳米摩擦学中的研究进展
郭畅1,2, 张晓慧1,2, 蔡金明1,2, 蔡晓明2,3
1. 昆明理工大学材料科学与工程学院, 云南 昆明 650093;
2. 东莞道睿石墨烯研究院, 广东 东莞 523000;
3. 昆明理工大学机电工程学院, 云南 昆明 650093
Research progress in application of graphene in nano-tribology
GUO Chang1,2, ZHANG Xiao-hui1,2, CAI Jin-ming1,2, CAI Xiao-ming2,3
1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2. Dongguan Daorui Graphene Research Institute, Dongguan 523000, China;
3. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  PDF (3662KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了石墨烯微片作为润滑添加剂在油性、水性及固相摩擦领域中的应用进展及其相应的制备方式,包括功能化改性、物理法处理、制备复合材料等。研究了石墨烯微片对材料摩擦系数及磨损率的影响,并采用薄膜润滑、轴承润滑、纳米填充等分析其减少摩擦磨损的作用机理。最后指出石墨烯用于摩擦领域仍有待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭畅
张晓慧
蔡金明
蔡晓明
关键词:  石墨烯  润滑添加剂  磨擦系数  磨损率    
Abstract: The applications of graphene nanosheets as a lubricating additive in oil-based lubes,water-base lubricant and solid lubricant are reviewed.Moreover,the corresponding preparation methods are also summarized,including functional modification,physical treatment and the preparation of composite materials.Effects of graphene nanosheets on the friction coefficient and wear rate of the materials are studied.The mechanism for reducing friction and wear is analyzed by means of referencing thin film lubrication,bearing lubrication and nano-filling.It is pointed out that there are still problems to be solved as for application of graphene nanosheets in the tribology field.
Key words:  graphene    lubrication additive    friction coefficient    wear rate
收稿日期:  2019-03-04      修回日期:  2019-09-02           出版日期:  2019-11-20
TQ127.1  
基金资助: 国家自然科学基金项目(11674136,11564022);千人计划青年人才项目(1097816002);云南省海外高层次人才引进基金(14078376);云南省中青年学术和技术带头人预备人才计划(2017HB010);昆明理工大学高层次人才引进计划(1407840010,1411909425)
通讯作者:  蔡晓明(1977-),男,硕士,讲师,研究方向为石墨烯制备及其纳米流体应用,通讯联系人,cxm@kmust.edu.cn。    E-mail:  cxm@kmust.edu.cn
作者简介:  郭畅(1993-),女,硕士,研究方向为石墨烯及其功能化材料制备与应用,guochang1204@163.com
引用本文:    
郭畅, 张晓慧, 蔡金明, 蔡晓明. 石墨烯在纳米摩擦学中的研究进展[J]. 现代化工, 2019, 39(11): 15-19,24.
GUO Chang, ZHANG Xiao-hui, CAI Jin-ming, CAI Xiao-ming. Research progress in application of graphene in nano-tribology. Modern Chemical Industry, 2019, 39(11): 15-19,24.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.11.004  或          https://www.xdhg.com.cn/CN/Y2019/V39/I11/15
[1] Xie H,Jiang B,He J,et al.Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts[J].Tribology International,2016,93:63-70.
[2] Zhang Y,Li C,Jia D,et al.Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding[J].International Journal of Machine Tools and Manufacture,2015,99:19-33.
[3] Liu D,Zhao W,Liu S,et al.Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J].Surface and Coatings Technology,2016,286:354-364.
[4] Lu X L,Liu X B,Yu P C,et al.Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding[J].Optics & Laser Technology,2016,78:87-94.
[5] Li X,Cai W,An J,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324(5932):1312-1314.
[6] Stankovich S,Dikin D A,Dommett G H,et al.Graphene-based composite materials[J].Nature,2006,442(7100):282.
[7] Mungse H P,Khatri O P.Chemically functionalized reduced graphene oxide as a novel material for reduction of friction and wear[J].The Journal of Physical Chemistry C,2014,118(26):14394-14402.
[8] Kumari S,Sharma O P,Gusain R,et al.Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction[J].ACS Applied Materials & Interfaces,2015,7(6):3708-3716.
[9] Lin J,Wang L,Chen G.Modification of graphene platelets and their tribological properties as a lubricant additive[J].Tribology Letters,2011,41(1):209-215.
[10] Zhang W,Zhou M,Zhu H,et al.Tribological properties of oleic acid-modified graphene as lubricant oil additives[J].Journal of Physics D:Applied Physics,2011,44(20):205303.
[11] Gupta B,Kumar N,Panda K,et al.Effective noncovalent functionalization of poly (ethylene glycol) to reduced graphene oxide nanosheets through γ-radiolysis for enhanced lubrication[J].The Journal of Physical Chemistry C,2016,120(4):2139-2148.
[12] Zhao J,Li Y,Wang Y,et al.Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction[J].RSC Advances,2017,7(3):1766-1770.
[13] Eswaraiah V,Sankaranarayanan V,Ramaprabhu S.Graphene-based engine oil nanofluids for tribological applications[J].ACS Applied Materials & Interfaces,2011,3(11):4221-4227.
[14] Jaiswal V,Umrao S,Rastogi R B,et al.Synthesis,characterization,and tribological evaluation of TiO2-reinforced boron and nitrogen co-doped reduced graphene oxide based hybrid nanomaterials as efficient antiwear lubricant additives[J].ACS Applied Materials & Interfaces,2016,8(18):11698-11710.
[15] Umrao S,Gupta T K,Kumar S,et al.Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band[J].ACS Applied Materials & Interfaces,2015,7(35):19831-19842.
[16] Bak J M,Lee T,Seo E,et al.Thermoresponsive graphene nanosheets by functionalization with polymer brushes[J].Polymer,2012,53(2):316-323.
[17] 崔庆生,乔玉林,赵海朝,等.石墨烯在水中的分散稳定性及其减摩性能研究[J].润滑与密封,2014,39(5):47-50.
[18] Liang S,Shen Z,Yi M,et al.In-situ exfoliated graphene for high-performance water-based lubricants[J].Carbon,2016,96:1181-1190.
[19] Yang J,Xia Y,Song H,et al.Synthesis of the liquid-like graphene with excellent tribological properties[J].Tribology International,2017,105:118-124.
[20] Elomaa O,Singh V K,Iyer A,et al.Graphene oxide in water lubrication on diamond-like carbon vs.stainless steel high-load contacts[J].Diamond and Related Materials,2015,52:43-48.
[21] Kim H J,Kim D E.Water lubrication of stainless steel using reduced graphene oxide coating[J].Scientific Reports,2015,5:17034.
[22] Berman D,Erdemir A,Sumant A V.Few layer graphene to reduce wear and friction on sliding steel surfaces[J].Carbon,2013,54:454-459.
[23] Filleter T,McChesney J L,Bostwick A,et al.Friction and dissipation in epitaxial graphene films[J].Physical Review Letters,2009,102(8):086102.
[24] Kim K S,Lee H J,Lee C,et al.Chemical vapor deposition-grown graphene:The thinnest solid lubricant[J].ACS Nano,2011,5(6):5107-5114.
[25] Liang H,Bu Y,Zhang J,et al.Graphene oxide film as solid lubricant[J].ACS Applied Materials & Interfaces,2013,5(13):6369-6375.
[26] Pu J,Wan S,Zhao W,et al.Preparation and tribological study of functionalized graphene-IL nanocomposite ultrathin lubrication films on Si substrates[J].The Journal of Physical Chemistry C,2011,115(27):13275-13284.
[27] Zhang L,Chen G.Properties of PA6 composite modified by graphene nanosheets[J].Materials Review,2011,25:85-85.
[28] Pan B,Xing Y,Liu J,et al.Tribological behavior of PPS coating modified by graphene[J].Tribology,2011,31:150-155.
[29] 黄伟九,赵远,王选伦.石墨烯/聚酰亚胺复合材料的力学和摩擦学性能[J].功能材料,2012,43(24):3484-3488.
[1] 龚德状, 关桦楠, 韩博林, 宋岩, 刘晓飞, 张娜. 磁性石墨烯复合纳米粒子的制备及其检测过氧化氢的应用研究[J]. 现代化工, 2019, 39(9): 77-81.
[2] 闫蕊, 王凯, 刘澍鑫, 李新宇, 李振中. 石墨烯量子点/聚酰亚胺复合薄膜的制备及性能研究[J]. 现代化工, 2019, 39(9): 124-128.
[3] 杜晨辉, 周宇辰, 张卫红, 李永昕. 磁性氧化石墨烯负载离子液体催化碳酸二甲酯的合成[J]. 现代化工, 2019, 39(9): 141-146.
[4] 丛俏, 贾祎, 高雨, 李岐, 常春, 秦洪伟. 纳米银氧化石墨烯复合修饰电极检测环丙沙星[J]. 现代化工, 2019, 39(8): 235-239,243.
[5] 宋巍, 龙靖文, 刘琪英, 潘成强, 王飞. 石墨烯基催化剂用于生物质转化的研究进展[J]. 现代化工, 2019, 39(7): 22-26,28.
[6] 苑小娇, 孙明轩, 郑朝. BiOBr/石墨烯/TiO2纳米管阵列薄膜的制备及光电化学性能研究[J]. 现代化工, 2019, 39(7): 156-161.
[7] 杨志远, 廖宏斌, 孟茁越, 薛文英, 李银艳. 类石墨烯多孔材料的制备及其气体吸附分离特性[J]. 现代化工, 2019, 39(6): 95-99.
[8] 罗祖云, 林义, 张笛, 洪若瑜. RGO/BaTiO3复合材料的制备与性能研究[J]. 现代化工, 2019, 39(5): 141-145.
[9] 王新海, 马珍珍. 电化学法制备的聚苯胺/石墨烯复合材料的微结构及性能研究[J]. 现代化工, 2019, 39(5): 156-159.
[10] 刘小燕, 高仕谦, 丁阳杰, 张占恩, 张丽君. 离子液体磁性石墨烯-超高效液相色谱串联质谱法测定水中的磺胺类抗生素[J]. 现代化工, 2019, 39(5): 240-244,246.
[11] 高丽媛, 杨宾, 郝梦琳, 刘杰梅. 不同石墨填料对相变材料性能的影响[J]. 现代化工, 2019, 39(4): 85-88.
[12] 唐功庆, 解希铭, 孙攀, 王丽丽, 李绍宁. 改性石墨烯/丁腈橡胶纳米复合材料的制备及性能研究[J]. 现代化工, 2019, 39(2): 181-184.
[13] 伍水生, 马博凯, 兰东辉, 谭年元, 易兵. 3D花状BiOBr/Graphene的合成与光催化性能研究[J]. 现代化工, 2019, 39(10): 76-80.
[14] 陈商奇, 应惠娟, 楼洒. 生物质基石墨烯的制备及应用研究进展[J]. 现代化工, 2019, 39(1): 32-36,38.
[15] 王钊, 岳红彦, 俞泽民, 高鑫, 姚龙辉, 王宝. 化学气相沉积制备泡沫石墨烯超级电容器电极研究进展[J]. 现代化工, 2018, 38(9): 33-35,37.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 109 -114 .
[2] . [J]. Modern Chemical Industry, 2015, 35(8): 115 -117 .
[3] . [J]. Modern Chemical Industry, 2015, 35(8): 141 -143,145 .
[4] . [J]. Modern Chemical Industry, 2015, 35(8): 144 -146 .
[5] . [J]. Modern Chemical Industry, 2015, 35(8): 165 -168 .
[6] . [J]. Modern Chemical Industry, 2015, 35(9): 21 -25 .
[7] . [J]. Modern Chemical Industry, 2015, 35(9): 67 -68,70 .
[8] . [J]. Modern Chemical Industry, 2015, 35(9): 69 -73 .
[9] . [J]. Modern Chemical Industry, 2015, 35(9): 81 -84 .
[10] . [J]. Modern Chemical Industry, 2015, 35(9): 152 -155 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn