Please wait a minute...
 
最新公告: 重要提醒:骗子冒充编辑部要求加作者微信,谨防上当!   关于暑假、寒假期间版面费发票及期刊样刊延迟邮寄的通知    
现代化工  2019, Vol. 39 Issue (10): 92-96    DOI: 10.16606/j.cnki.issn0253-4320.2019.10.020
  科研与开发 本期目录 | 过刊浏览 | 高级检索 |
SOFC阴极材料La0.7Sr0.3Fe0.7Co0.2Ni0.1O3-δ的制备与性能
李向国1, 李松波1, 安胜利2, 张帆1
1. 内蒙古科技大学化学与化工学院, 内蒙古 包头 014010;
2. 内蒙古科技大学材料与冶金学院, 内蒙古 包头 014010
Synthesis and properties of La0.7Sr0.3Fe0.7Co0.2Ni0.1O3-δ cathode material for solid oxides fuel cell
LI Xiang-guo1, LI Song-bo1, AN Sheng-li2, ZHANG Fan1
1. School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China;
2. School of Material and Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010, China
下载:  PDF (2241KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法、固相法制备La0.7Sr0.3Fe0.7Co0.2Ni0.1O3-δ(LSFCN)中低温固体氧化物燃料电池阴极材料,通过热重-差热分析、X射线衍射、扫描电镜、直流四探针法、热膨胀系数、交流阻抗对材料的结构与性能进行研究。结果表明,2种方法制备的LSFCN均为单一的钙钛矿结构,并且与电解质SDC在950℃以下没发生化学反应,稳定性较好。溶胶-凝胶法制备的阴极粉体颗粒最小、形状规整、结晶度高。在测试温度400~800℃条件下,2种方法合成的阴极材料LSFCN是小极化子导电机制,电导率随着测试温度的升高而增大。溶胶-凝胶法制得的LSFCN的电导率均大于固相法,在800℃时最大达到619.4 S/cm。2种方法制备的LSFCN阴极样品与电解质SDC匹配性好。2种方法制备的LSFCN有利于氧在三相界面的传输,提高了材料的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李向国
李松波
安胜利
张帆
关键词:  溶胶-凝胶法  固相法  钙钛矿  电导率  热膨胀  交流阻抗    
Abstract: La0.7Sr0.3Fe0.7Co0.2Ni0.1O3-δ(LSFCN),a cathode material for medium and low temperature solid oxides fuel cell,is prepared by sol-gel method and solid state reaction method,respectively.The structure and properties of the material are measured by thermogravimetry-differential thermal analysis (TG-DTA),X-ray diffractometry (XRD),scanning electron microscopy (SEM),four-probe DC method,thermal expansion coefficient (TEC) and alternating-current impedance.It is shown that LSFCN prepared by two methods both have a single perovskite structure and do not react with the electrolyte SDC during 950℃ calcination,meaning a good stability.LSFCN prepared by sol-gel method has a smaller particle size,a more regular shape and a higher crystallinity.Both LSFCN by two methods exhibit a conductivity mechanism of small polaron at the test temperature of 400-800℃,their conductivities increase with the increase of the test temperature.The conductivity of LSFCN prepared by sol-gel method is higher than that of LSFCN prepared by the solid state reaction method.The maximum conductivity of LSFCN reaches 619.4 S·cm-1 at 800℃.LSFCN cathode samples prepared by the two methods have a good match with SDC electrolyte,and both are favorable for oxygen transfer through three-phase interface,which can improve the electro chemical properties of the materials.
Key words:  sol-gel method    solid state reaction method    perovskite    conductivity    thermal expansion    alternating-current impedance
收稿日期:  2019-01-06      修回日期:  2019-08-08           出版日期:  2019-10-20
TM911.4  
基金资助: 国家自然科学基金项目(51474133);内蒙古自然科学基金项目(2017MS0218)
通讯作者:  李松波(1972-),男,博士,教授,研究方向为固体氧化物燃料电池,通讯联系人,lisongbo@imust.cn。   
作者简介:  李向国(1984-),男,硕士研究生,研究方向为固体氧化物燃料电池阴极材料,2512866704@qq.com
引用本文:    
李向国, 李松波, 安胜利, 张帆. SOFC阴极材料La0.7Sr0.3Fe0.7Co0.2Ni0.1O3-δ的制备与性能[J]. 现代化工, 2019, 39(10): 92-96.
LI Xiang-guo, LI Song-bo, AN Sheng-li, ZHANG Fan. Synthesis and properties of La0.7Sr0.3Fe0.7Co0.2Ni0.1O3-δ cathode material for solid oxides fuel cell. Modern Chemical Industry, 2019, 39(10): 92-96.
链接本文:  
https://www.xdhg.com.cn/CN/10.16606/j.cnki.issn0253-4320.2019.10.020  或          https://www.xdhg.com.cn/CN/Y2019/V39/I10/92
[1] Harumi,Yokokawa.Report of five-year NEDO project on durabilit/reliability of SOFC stacks[J].ECS Transactions,2013,57(1):299-308.
[2] Kenji Horiuchi.Current status of national SOFC projects in Japan[J].ECS Transactions,2013,57(1):3-10.
[3] Suzuki M,Takuwa Y,Inoue S,et al.Durability verification of residential SOFC CHP system[J].ECS Transactions,2013,57(1):309-314.
[4] 黎朝晖,侯书恩,庞松.中温固体氧化物燃料电池阴极材料La0.7Sr0.2Co0.1CuO3-δ的制备与表征[J].硅酸盐通报,2010,29(1):33-37.
[5] Shiono M,Kobayashi K,Nguyen T L,et al.Effect of CeO2 interlayer on ZrO2 electrolyte/La(Sr) CoO3 cathode for low temperature SOFCs[J].Solid State Ionics,2004,170(1/2):1-7.
[6] 龚明光,陆丽华,张华,等.低温自燃烧法合成La2NiO4阴极材料及其性能[J].硅酸盐通报,2009,28(1):38-43.
[7] Toshiaki Matsui,Siqi Li,Hiroki Muroyama,et al.Electrochemical property of solid solutiona formed in (La,Sr)(Co,Fe)O3-δ cathode/doped-CoO2 interlayer/Y2O3-ZrO2 electrolyte system during operation of solid oxide fuel cells[J].Solid State Ionics,2017,300:135-139.
[8] Royer S,Duprez D,Kaliaguine S.Oxygen mobility in LaCoO3 perovskites[J].Catalysis Today,2006,112(1-4):99-102.
[9] 毛宗强.燃料电池[M].北京:化学工业出版社,2005:7-11.
[10] Wang S,Jiang Y,Zhang Y,et al.Electrochemical performance of mixed ionic-electronic conducting oxide as anode for solid oxide fuel cell[J].Solid State Ionics,1999,120:75-84.
[11] 江金国,崔崇La0.6Sr0.4Fe0.8Co0.2O3-δ系阴极材料制备及表征[J].材料科学与工程学报,2004,24(3):352-354.
[12] Che Xiangli,Shen Yu,Li Hang,et al.Assessment of LnBaCo1.6Ni0.4O5+δ(Ln=Pr,Nd,and Sm)double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells[J].Journal of Power Sources,2013,222(15):288-293.
[13] Wei Bo,Lü Zhe,Jia Dechang,et al.Thermal expansion and electrochemical properties of Ni-doped GdBaCo2O5+δ double-perovskite type oxides[J].International Journal of Hydrogen Energy,2010,35(8):3775-3782.
[14] 李蕾.Fe和Ni置换钴的双钙钛矿中温固体氧化物燃料电池阴极材料的性能研究[D].长春:吉林大学,2016:23-25.
[15] 李强,赵辉,曾旭,等.固体氧化物燃料电池LaSrCu0.7Fe0.3O4阴极材料的电化学性能研究[J].黑龙江大学自然科学学报,2013,30(6):769-770.
[16] 靳宏建,王欢,蒋晓勇,等.SmBaCo2O5+δ-Ce0.8Sm0.2O1.9复合阴极的热膨胀及电化学性能[J].硅酸盐通报,2012,31(4):790-793.
[17] 赵伟杰,张晶.甘氨酸-硝酸盐法制备La2FexCu1-xO4及其氧敏性能[J].硅酸盐通报,2013,32(3):407-408.
[18] Yu Shancheng,He Shoucheng,Chen Han,et al.Effect of cacination temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate-temperature solid oxide fuel cell cathodes[J].Journal of Power Sources,2015,280:581-587.
[19] 胡智,黄晓巍,陈杨辉.EDTA-甘氨酸法制备SmBaCo2O5+δ阴极材料及其性能[J].物理化学学报,2013,29(12):2585-2591.
[20] 吉冬冬,朱正玉,田长安,等.固体氧化物燃料电池电解质材料La2Mo2-xMnxO9-δ的制备与性能研究[J].中国陶瓷,2018,54(2):31-32.
[21] 何志平.SmBaCoCuO5+δ作为SOFC阴极材料的制备和性能研究[J].中国陶瓷工业,2015,22(6):17-18.
[22] 张磊磊,常莹,黄金华等.中温SOFC复合阴极材料BSCN0.6-30% GDC的表征[J].辽宁石油化工大学学报,2014,34(2):6-7.
[23] Ding Xifeng,Cui Chong,Guo Lucun.Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3-δ-Sm0.2Ce0.8O2-δ composite cathode for IT-SOFCs[J].Journal of Alloys and Compounds,2008,481(1-2):845-850.
[24] Hwang Hae Jin,Moon Ji Woong,Lee Seunghun,et al.Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs[J].2005,145(2):243-248.
[25] Leng Yongjun,Chan Siew Hwa,Liu Qinglin.Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte[J].International Journal of Hydrogen Energy,2008,33(14):3808-3817.
[26] 徐红梅,张华,李恒等.纳米结构LSCD-SDC复合阴极的制备及其氧还原机理研究[J].无机材料学报,2017,4(32):379-385.
[27] Dumaisnil K,Fasquelle D,Mascot M,et al.Synthesis and characterization of La0.6Sr0.4Fe0.2Co0.8O3 films for solid oxide fuel cell cathode[J].Thin Solid Films,2014,553:89-92.
[1] 吴春雷. 高温固相法制备铝酸盐稀土发光材料及其发光性研究[J]. 现代化工, 2019, 39(8): 197-202.
[2] 程晨, 杜仕国, 鲁彦玲, 刘献杰. 硅凝胶包覆密胺甲醛树脂微胶囊红磷的研究[J]. 现代化工, 2019, 39(6): 182-186.
[3] 李筱晗, 朱晓莲, 王帅兵, 孟昭辉, 李春明, 刘巍. 一种新型纳米二氧化硅微囊的制备[J]. 现代化工, 2019, 39(6): 126-129.
[4] 席珍珍, 王瑞齐, 宋志成, 郭永刚, 吴翔. 钙钛矿太阳能电池研究进展[J]. 现代化工, 2019, 39(5): 66-70.
[5] 王海英, 韩洪晶, 孙恩浩, 张亚男, 李金鑫, 陈彦广, 赵宏志, 康越. 钙钛矿催化有机物转化研究进展[J]. 现代化工, 2019, 39(5): 24-28.
[6] 陈彦广, 赵宏志, 王海英, 张亚男, 韩洪晶. 钙钛矿的制备及其催化热解甘蔗渣木质素的研究[J]. 现代化工, 2019, 39(5): 96-100.
[7] 吴勇, 鲍扬, 朱兆连, 仲维啸, 王海玲. 河底泥陶粒负载Sn-Sb-TiO2电极处理2,4-二硝基甲苯废水[J]. 现代化工, 2019, 39(4): 71-74,76.
[8] 樊崇辉, 徐阳. 磷/镁/硅三元阻燃棉的制备及性能研究[J]. 现代化工, 2019, 39(4): 79-84.
[9] 周龙祥, 王保明, 田玉提, 刘咏, 化全县, 刘丽, 芦雷鸣, 汤建伟. 二氧化钛包覆石蜡相变微胶囊的制备及表征[J]. 现代化工, 2019, 39(3): 82-86.
[10] 盛宇, 徐丽慧, 沈勇, 王黎明, 潘虹. 疏水型SiO2/TiO2复合气凝胶的制备及光催化性能研究[J]. 现代化工, 2019, 39(2): 98-102.
[11] 唐功庆, 解希铭, 孙攀, 王丽丽, 李绍宁. 改性石墨烯/丁腈橡胶纳米复合材料的制备及性能研究[J]. 现代化工, 2019, 39(2): 181-184.
[12] 卢秀瑾, 张青红, 王宏志, 李耀刚, 侯成义. 高空气及热稳定性CsPbBr3@SiO2复合量子点的制备[J]. 现代化工, 2019, 39(10): 156-159,164.
[13] 代汗清, 徐文倩, 韦玮. 钠离子电池晶体电解质研究进展[J]. 现代化工, 2019, 39(1): 51-55.
[14] 王哲焱, 冯涛, 张学俊. 有机-无机杂化钙钛矿材料的研究进展[J]. 现代化工, 2019, 39(1): 72-76.
[15] 李新利, 陈永超, 李丽华, 顾永军, 任凤章, 黄金亮. 新型钙钛矿太阳能电池J-V滞回分析[J]. 现代化工, 2018, 38(4): 50-54.
[1] . [J]. Modern Chemical Industry, 2015, 35(8): 182 -184 .
[2] . [J]. Modern Chemical Industry, 2015, 35(9): 6 -9 .
[3] . [J]. Modern Chemical Industry, 2015, 35(9): 30 -33 .
[4] . [J]. Modern Chemical Industry, 2015, 35(9): 38 -42 .
[5] . [J]. Modern Chemical Industry, 2015, 35(9): 117 -120 .
[6] . [J]. Modern Chemical Industry, 2015, 35(9): 121 -124,126 .
[7] . [J]. Modern Chemical Industry, 2015, 35(9): 140 -142,144 .
[8] . [J]. Modern Chemical Industry, 2015, 35(9): 159 -164 .
[9] . [J]. Modern Chemical Industry, 2015, 35(9): 189 -192 .
[10] . [J]. Modern Chemical Industry, 2015, 35(11): 1 -4 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-37
版权所有 © 《现代化工》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn